{ "cells": [ { "cell_type": "code", "execution_count": 3, "metadata": { "tags": [ "remove_cell" ] }, "outputs": [], "source": [ "from datascience import *\n", "\n", "import sympy\n", "import matplotlib.pyplot as plt\n", "import matplotlib as mpl\n", "import matplotlib.patches as patches\n", "# plt.style.use('seaborn-muted')\n", "mpl.rcParams['figure.dpi'] = 200\n", "%matplotlib inline\n", "\n", "from IPython.display import display\n", "import numpy as np\n", "import pandas as pd\n", "solve = lambda x,y: sympy.solve(x-y)[0] if len(sympy.solve(x-y))==1 else \"Not Single Solution\"\n", "\n", "import warnings\n", "warnings.filterwarnings('ignore')" ] }, { "cell_type": "markdown", "metadata": { "cell_id": "4f243c01-873e-4eb5-bdfe-451f2a06dfea" }, "source": [ "# Market Equilibria\n", "\n", "We will now explore the relationship between price and quantity of oranges produced between 1924 and 1938. Since the data {cite}`01demand-fruits` is from the 1920s and 1930s, it is important to remember that the prices are much lower than what they would be today because of inflation, competition, innovations, and other factors. For example, in 1924, a ton of oranges would have costed \\$6.63; that same amount in 2019 is \\$100.78. " ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "cell_id": "5a6c6746-bad6-466e-8c18-bc16f5fad344" }, "outputs": [ { "data": { "text/html": [ "
Year | Pear Price | Pear Unloads (Tons) | Plum Price | Plum Unloads | Peach Price | Peach Unloads | Orange Price | Orange Unloads | NY Factory Wages | \n", "
---|---|---|---|---|---|---|---|---|---|
1924 | 8.04 | 18489 | 8.86 | 6582 | 4.96 | 41880 | 6.63 | 21258 | 27.22 | \n", "
1925 | 5.67 | 21919 | 7.27 | 5526 | 4.87 | 38772 | 9.19 | 15426 | 28.03 | \n", "
1926 | 5.44 | 29328 | 6.68 | 5742 | 3.35 | 46516 | 7.2 | 24762 | 28.89 | \n", "
1927 | 7.15 | 17082 | 8.09 | 5758 | 5.7 | 32500 | 8.63 | 22766 | 29.14 | \n", "
1928 | 5.81 | 20708 | 7.41 | 6000 | 4.13 | 46820 | 10.71 | 18766 | 29.34 | \n", "
1929 | 7.6 | 13071 | 10.86 | 3504 | 6.7 | 36990 | 6.36 | 35702 | 29.97 | \n", "
1930 | 5.06 | 22068 | 6.23 | 7998 | 6.35 | 29680 | 10.5 | 23718 | 28.68 | \n", "
1931 | 5.4 | 19255 | 6.86 | 5638 | 3.91 | 50940 | 5.81 | 39263 | 26.35 | \n", "
1932 | 4.06 | 17293 | 6.09 | 7364 | 4.57 | 27642 | 4.71 | 38553 | 21.98 | \n", "
1933 | 4.78 | 11063 | 5.86 | 8136 | 3.57 | 35560 | 4.6 | 36540 | 22.26 | \n", "
... (5 rows omitted)
" ], "text/plain": [ "Year | Pear Price | Pear Unloads (Tons) | Plum Price | Plum Unloads | Peach Price | Peach Unloads | Orange Price | Orange Unloads | NY Factory Wages\n", "1924 | 8.04 | 18489 | 8.86 | 6582 | 4.96 | 41880 | 6.63 | 21258 | 27.22\n", "1925 | 5.67 | 21919 | 7.27 | 5526 | 4.87 | 38772 | 9.19 | 15426 | 28.03\n", "1926 | 5.44 | 29328 | 6.68 | 5742 | 3.35 | 46516 | 7.2 | 24762 | 28.89\n", "1927 | 7.15 | 17082 | 8.09 | 5758 | 5.7 | 32500 | 8.63 | 22766 | 29.14\n", "1928 | 5.81 | 20708 | 7.41 | 6000 | 4.13 | 46820 | 10.71 | 18766 | 29.34\n", "1929 | 7.6 | 13071 | 10.86 | 3504 | 6.7 | 36990 | 6.36 | 35702 | 29.97\n", "1930 | 5.06 | 22068 | 6.23 | 7998 | 6.35 | 29680 | 10.5 | 23718 | 28.68\n", "1931 | 5.4 | 19255 | 6.86 | 5638 | 3.91 | 50940 | 5.81 | 39263 | 26.35\n", "1932 | 4.06 | 17293 | 6.09 | 7364 | 4.57 | 27642 | 4.71 | 38553 | 21.98\n", "1933 | 4.78 | 11063 | 5.86 | 8136 | 3.57 | 35560 | 4.6 | 36540 | 22.26\n", "... (5 rows omitted)" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "fruitprice = Table.read_table('fruitprice.csv')\n", "fruitprice" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Finding the Equilibrium\n", "\n", "An important concept in econmics is the market equilibrium. This is the point at which the demand and supply curves meet and represents the \"optimal\" level of production and price in that market." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "```{admonition} Definition\n", "The **market equilibrium** is the price and quantity at which the demand and supply curves intersect. The price and resulting transaction quantity at the equilibrium is what we would predict to observe in the market.\n", "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's walk through how to the market equilibrium using the market for oranges as an example." ] }, { "cell_type": "markdown", "metadata": { "cell_id": "61b55ebf-36a4-4ce1-89b7-4b860da25de4" }, "source": [ "### Data Preprocessing\n", "\n", "Because we are only examining the relationship between prices and quantity for oranges, we can create a new table with the relevant columns: `Year`, `Orange Price`, and `Orange Unloads`. Here, `Orange Price` is measured in dollars, while `Orange Unloads` is measured in tons." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "cell_id": "b75d49b7-7c34-4c8a-a844-e16f26940df7" }, "outputs": [ { "data": { "text/html": [ "Year | Orange Price | Orange Unloads | \n", "
---|---|---|
1924 | 6.63 | 21258 | \n", "
1925 | 9.19 | 15426 | \n", "
1926 | 7.2 | 24762 | \n", "
1927 | 8.63 | 22766 | \n", "
1928 | 10.71 | 18766 | \n", "
1929 | 6.36 | 35702 | \n", "
1930 | 10.5 | 23718 | \n", "
1931 | 5.81 | 39263 | \n", "
1932 | 4.71 | 38553 | \n", "
1933 | 4.6 | 36540 | \n", "
... (5 rows omitted)
" ], "text/plain": [ "Year | Orange Price | Orange Unloads\n", "1924 | 6.63 | 21258\n", "1925 | 9.19 | 15426\n", "1926 | 7.2 | 24762\n", "1927 | 8.63 | 22766\n", "1928 | 10.71 | 18766\n", "1929 | 6.36 | 35702\n", "1930 | 10.5 | 23718\n", "1931 | 5.81 | 39263\n", "1932 | 4.71 | 38553\n", "1933 | 4.6 | 36540\n", "... (5 rows omitted)" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "oranges_raw = fruitprice.select(\"Year\", \"Orange Price\", \"Orange Unloads\")\n", "oranges_raw" ] }, { "cell_type": "markdown", "metadata": { "cell_id": "8c900ffc-173d-4c91-97c9-e1d8924c8d67" }, "source": [ "Next, we will rename our columns. In this case, let's rename `Orange Unloads` to `Quantity` and `Orange Price` to `Price` for brevity and understandability. " ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "cell_id": "254b8839-cf4f-460b-a597-c267ad6ebb84" }, "outputs": [ { "data": { "text/html": [ "Year | Price | Quantity | \n", "
---|---|---|
1924 | 6.63 | 21258 | \n", "
1925 | 9.19 | 15426 | \n", "
1926 | 7.2 | 24762 | \n", "
1927 | 8.63 | 22766 | \n", "
1928 | 10.71 | 18766 | \n", "
1929 | 6.36 | 35702 | \n", "
1930 | 10.5 | 23718 | \n", "
1931 | 5.81 | 39263 | \n", "
1932 | 4.71 | 38553 | \n", "
1933 | 4.6 | 36540 | \n", "
... (5 rows omitted)
" ], "text/plain": [ "Year | Price | Quantity\n", "1924 | 6.63 | 21258\n", "1925 | 9.19 | 15426\n", "1926 | 7.2 | 24762\n", "1927 | 8.63 | 22766\n", "1928 | 10.71 | 18766\n", "1929 | 6.36 | 35702\n", "1930 | 10.5 | 23718\n", "1931 | 5.81 | 39263\n", "1932 | 4.71 | 38553\n", "1933 | 4.6 | 36540\n", "... (5 rows omitted)" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "oranges = oranges_raw.relabel(\"Orange Unloads\", \"Quantity\").relabel(\"Orange Price\", \"Price\")\n", "oranges" ] }, { "cell_type": "markdown", "metadata": { "cell_id": "d3a20db0-45a5-4ca0-8edf-ae8fe730017c" }, "source": [ "### Visualize the Relationship\n", "\n", "Let's first take a look to see what the relationship between price and quantity is. We would expect to see a downward-sloping relationship between price and quantity; if a product's price increases, consumers will purchase less, and if a product's price decreases, then consumers will purchase more. \n", "\n", "We will create a scatterplot between the points.\n", "\n", "[Following image is a scatter plot for demand for oranges]" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "cell_id": "b7a2e982-d79e-4094-a295-d8edea5e3c12" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6IAAAPCCAYAAABiDGXdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAB7CAAAewgFu0HU+AACyeElEQVR4nOzdeXxTVd7H8W/apklXWvYKLW2VVikgbh1kdCiDMoL7ggs6Iu7I6OiIj6MOjuMy6IgbDvqoOEVF3EVcwPWhuEJFQRCQAm1tqmEr3ds0Xe7zh5IhTVvS7SaFz/v16ovk5tx7f21Jmm/OuedYDMMwBAAAAACASUICXQAAAAAA4OBCEAUAAAAAmIogCgAAAAAwFUEUAAAAAGAqgigAAAAAwFQEUQAAAACAqQiiAAAAAABTEUQBAAAAAKYiiAIAAAAATEUQBQAAAACYiiAKAAAAADAVQRQAAAAAYCqCKAAAAADAVARRAAAAAICpCKIAAAAAAFMRRAEAAAAApiKIAgAAAABMRRAFAAAAAJiKIAoAAAAAMFVYoAsAAASfyy67TM8995znfnZ2ti677LKA1VNbW6u1a9cqPz9fO3fuVE1NjcLDwxUfH6/evXtrxIgROuyww2SxWAJWI4LHmjVrlJ2drS+//FJFRUUqLS1VQ0OD5/G///3vuuuuuwJXYJAzDEMbN27UDz/8oOLiYlVXVyskJEQxMTFKTk7WiBEjlJSUFOgyAfRwBFGgmzR/I98Si8Uim80mu92uPn36aMCAATr00EN1xBFHaPTo0Ro9erQiIiJMqhgILmVlZXruuef0+uuva+XKlV5BoiVxcXE64YQTdPHFF+vMM8/kuXMQcrlcuu6665SdnR3oUnqklStX6plnntGSJUtUUlLSZtuUlBSdf/75uuaaa5SSkmJShQAOJARRIIAMw5DL5ZLL5VJZWZm2bdumL7/80vO43W7XpEmTNG3aNJ166qn09uCgUFtbq/vvv18PP/ywqqqq/N6vrKxM7777rt59913FxMTopptu0syZMxUTE9ON1SKYXHXVVVq4cGGgy+hxtm3bpj/96U96//33/d6noKBADzzwgB566CFdffXVmj17tmJjY7uxSgAHGoIoEMRcLpfefPNNvfnmm8rIyNBjjz2m8ePHB7osoNt8//33Ou+887R58+Y220VGRsput6uyslL19fU+j1dWVuruu+/Wk08+qdWrVzOM8CDw2Wef+YTQo446SqeeeqoGDhyo0NBQz/Zjjz3W7PKC1iuvvKLLL79cNTU1rbaJiYlRfX29XC6Xz2MNDQ164okn9N5772nJkiU68sgju7NcAAcQgihgkqFDh+ovf/mLz/a6ujqVlpaqrKxMRUVFWrVqlX7++Wefdhs2bNBJJ52kG264QQ899JDCwnj64sCyYsUKnXbaaT69oCEhIZo0aZImTZqk8ePHa/DgwYqMjJT0y6gCh8Oh3NxcLVu2TG+88YbKy8s9++7atUt79uwhiB4E5s+f73X/0ksv1YIFCxhJ0oZ58+bpT3/6k8/2pKQkXXLJJTr33HOVlpam6OhoSdKePXv03Xff6ZVXXtHLL7/s9Vz78ccfdcIJJ+iDDz7QmDFjTPseAPRgBoBuMXXqVEOS52vs2LF+7/vjjz8a9957r5GQkOB1jL1fZ599tlFfX999xeOg1/z/b3Z2dreeb82aNUZUVJTP//WTTz7ZWLdund/HqaysNB544AGjV69enmOsWbOm+wpH0EhNTfX6v7N169ZAlxTUXn31VcNisXj9zEJDQ41bbrnFqKmp2e/+P//8s3H22Wf7PGd79eplbN682YTvAEBPx/ItQBBKSkrSHXfcoR9//FF///vfFRLi/VRdvHixbr755gBVB3StyspKnXXWWaqurvbaPnPmTH344YcaMWKE38eKjo7W//zP/2jz5s065ZRTurpUBCm32638/HzP/ZiYGB166KEBrCi4bdu2TdOmTZNhGJ5toaGhWrRokf71r3/5NdFXQkKC3nzzTd10001e28vLy3XuuefK7XZ3ed0ADiwEUSCIWa1W3XXXXXr33Xdls9m8Hps7d64+/vjjAFUGdJ2//vWv+vHHH7223XzzzXrwwQc7fMwBAwZo6dKluv322xmaeRDYd4io9MsMymjdtdde6/PBz7x583T++ee3+1gPP/yw/vjHP3pt+/777/Wvf/2rUzUCOPARRIEeYOLEiXrkkUd8tt98881en2gDPc3WrVv19NNPe20bMWKE/vnPf3b62BaLRffdd1+7elTRMzWfaKf5KBL81yeffOLzIeZJJ52ka665psPHnDt3rvr37++17cEHH1RpaWmHjwngwMdsJ0APMX36dL399tte0+uvW7dOn3zyiU466aQOHbOwsFBr1qzRzp07VVJSopiYGPXv31+jRo1Senp6V5XuZfv27fryyy9VWFio2tpa9erVSyNHjtSYMWP8moBpy5Yt+vrrr/Xzzz+roaFBAwYM0LHHHtslYaOsrEwbN27Uli1btGfPHtXU1CgmJkbx8fFKT0/X0Ucf3W2TRDU2Nurrr7/WunXrtHv3btntdvXr10+ZmZld9ruor6/X559/roKCAm3fvl02m01DhgzR8ccfr0GDBnXJOdrrscce81kfdN68eQoPD++yc/SkUFJdXa2VK1cqLy9PpaWlCgkJ0cCBA3XZZZcFujQfpaWl+uqrr7Rjxw7t2rVLYWFh6tevn4YOHarjjjvOa5ba7tYdH8gZhqE1a9Zo8+bN2rVrl6qrq9W3b1/1799fxx9/vE/w6iput1urVq3SDz/8oJKSEjU1Nal///6aMmWKZ5Kuznj44Ye97oeEhGjevHmdOmZcXJxmz56tK664wrOtoqJCzz77rGbOnNmpY//4449avXq1ioqKVF1draioKB1//PEaPXp0m/vt2rVLGzdu1NatW1VWViaXy6VevXopPj5eI0aM0PDhw7vttcHtduvLL7/Uxo0bVVpaqujoaPXv31+//e1vu2zitKqqKq1YsULFxcXavXu3oqKidOihh2rMmDHq06dPl5yjJd39vsHlcun777/Xxo0btWfPHlVVVSk8PFzR0dEaNGiQUlJSdMQRR8hqtXbBd4OAC+wlqsCBqzOTFbXm448/9pkY4pJLLmnXMcrLy4277rrLSEtLa3EipL1fKSkpxv333+/XpBV7ZWdnex1j6tSpnsdWr15tTJgwwWdyjL1fAwcONJ544gmjqampxWO/8cYbxlFHHdVqvcOGDTPef//9dv0sDMMwvvrqK+Mvf/mLceSRR7Za296vqKgo46KLLurQ5DfNj7WXy+Uy7r33XqN///6tnjctLc146aWX2n3OvcrLy40bb7zR6N27d6vnGDt2rPHZZ5959jFjsqL6+nojPj7e6zwZGRldfp7WdPZ7XL58ebue4221z8vLM6ZMmWLYbLYWfz+GYRgLFy70eY629nzZn2XLlnkdq0+fPkZdXd1+92toaDCys7ON0aNHG6Ghoa3+f+rdu7dx7bXXGj///HOH6vNHW8/Vtr7293v++eefjeuuu67N56TFYjGOOeYYY8GCBUZjY6PfNRcUFHgdZ8iQIV7nnT59uhEdHd3iOQsKCjr2g9rH9u3bfX5vEyZM6PRxDcMwamtrjbi4uHY9n9t6Dr7yyivG0Ucf3eLPYt+/LXs1NDQYH3/8sTF9+nQjPT19v/8PevXqZVxzzTXtntSqrd9hWVmZMXPmTCM2NrbV8x5zzDHGBx980K5z7is/P984//zzDbvd3uLxQ0NDjTPPPNP4/vvvPfuMHTvWq83y5cvbdc7ufN+w17p164yLL764xUnrmn9FREQYv/vd74yHH37Y2LNnT7vPheBBEAW6SXcEUcMwfP7A9u3b1+83o88//7zRp0+fdr1pS0xMNFavXu3X8VsLoo8++mibb1r3/brwwguNhoYGzzHr6uqMiy++2O96H3nkEb9/lhdccEGH38zedttt7XoD2nx/w/jlDcXw4cP9PueVV17p9bPxx1dffWUMGjTIr+NbLBbj7rvvNgzDnCDaPJhJMh5++OEuP09rgiWIPvvss60G0H3/v9TU1Pi8wW3vG8q9zj//fK/j3HDDDfvd5+uvvzaGDRvWrudJZGSk8Z///KdDNe5PR5+7bf2e586da0RGRrbreCNHjjTy8vL8qrm1EPPuu++2GV6krgmizV+jJXXqQ67mrr32Wp/jFxYWttq+pedgVVWVcdZZZ7X5s2gpiP7mN7/p0P+HsLAwY+7cuX5/j639Dr/99lsjMTHR7/Pedddd7f3xGvPnzzciIiL8On54eLjnudeZINrd7xsMwzDuvvtuv98jNP9avHhxO3+KCCY9Z7wSAEnSuHHjvO7v3r1bW7ZsaXMfwzD0t7/9TZdeeqlKSkp8Hg8NDVXv3r1bHA7pcDg0duxYffLJJx2q94knntCNN96oxsZGzzar1ar4+PgWJ5F5+eWXdccdd0iSmpqadP755+vFF1/0ahMZGanY2NgWz3fTTTfpvffe86u2srKyFrdbLBbFxsYqPj6+1eGFs2fP1lVXXeXXeVpSXFyssWPH6vvvv/faHhMTo6ioqBb3mT9/vv7+97/7fY5Vq1bpD3/4g3766SefxywWi+Lj472GphmGoTvvvFMPPfSQ3+fojE8//dRn29ixY005d7B47rnndMUVV6iurs5re1xcnM/Qs4iICF144YVe27Kzs9t9ztLSUi1ZssRr27Rp09rc56233tLYsWO1ceNGn8csFot69erV4v/bmpoaXX755br//vvbXafZZs6cqRtuuMHnelPpl9es1iZAWrdunX7729/q66+/7tB5P/74Y5199tmqqKjw2h4bGyu73d6hY7ZmxYoVPts6emlHS8aPH++zraXneWsaGxt11lln6a233vLavvdvRltaez0PCQlRXFyc4uLiWhyK29DQoBtuuEH33HOP33U2t27dOv3+97+Xw+Hw2t6rV69WZyC+6667fNa+bctTTz2lq666SrW1tT6PhYaG+vxNdbvduuKKK/Taa6/5fY59mfW+Yfbs2brzzju93iPsFRYWpvj4+Db/FqOHC3AQBg5Y3dUjumDBAp9PBF999dU29/nXv/7ls8/QoUONxx57zPjhhx+8elS3bdtmzJkzxxgwYIBX+z59+hjFxcVtnqf5p+1HHXWUYbVaDUlGfHy88c9//tPYsmWLp311dbXx6quvGikpKT6fUG/atMm4++67PdvS09ONBQsWGDt37vTsv2PHDuPBBx/0Gco2ZMgQw+127/dn+Yc//MGQZBxxxBHGzJkzjXfeeccoKCjw+nk0NjYamzZtMh577DFj6NChPj/HF154Yb/nMQzf3pvjjz/ec/ukk04y3n77baOiosLT3ul0Gg8//LDXepj7/mz2p7S0tMV1aCdPnmzk5OR4fj4NDQ3GqlWrjCuuuMIzNNlqtfoMieuOHtHmvR42m82v31tXCXSPaEpKiqf3LSQkxJg2bZqxYsUKzxDZpqYmo7Cw0Lj//vs9x1i5cqXXMaKioozKysp21f3vf//b6xijRo1qs/0XX3xhhIWFee0THx9v/PWvfzVWrVrl9TvbvXu3sWjRIuPII4/0am+xWIylS5e2q879efLJJz1f9957r9f5evfu7fX4vl8//PCDz7Geeuopn+eK3W43br/9dmPjxo2e14Ta2lrjvffeM0466SSf9occcoixe/fuNmtu3pvWp08fr9fas846y1i2bJnX0Mbt27cb//73v41du3Z1+mc2atQor/MnJSV1+pj7ys/P9/m5/OUvf2m1ffPnYEZGhud2//79jYceesjYunWr5+fvcrmML774osW/eXtHCx1zzDHGnXfeabz//vvGTz/95PV6Xl9fb3z33XctrtMdEhJi5OTk7Pd7bP477N+/v3HooYd6/p+ff/75xkcffWTU1tZ6/VzuvPNOn+G0sbGxRklJyX7P+fXXX/v0GIaFhRk33nijsWbNGs/onPr6euPzzz83pk6d6nk979Wrl89IKn96RM1431BYWGiEh4d77XPYYYcZTzzxhLF161afEUDFxcXG+++/b9x6662e0Rn0iPZsBFGgm3RXEP322299/jg8+OCDrbb/8ssvfd5E3nTTTfu9HmzXrl3Gb3/7W6/9Tj311Db3aWnYlyRjxIgRxk8//dTqftu3bzeSkpK89vnDH/7g+QN1ySWXtBlQcnJyfP5I+/PHae7cucZXX32133Z7uVwu4+qrr/Y6T2pqql9DdFv6uYSFhRlPP/10m/t99913RkxMjNd+N954437Pd/nll/u8yXr++efb3Gfp0qWtDhHtjiA6YsQIr3MceeSRXX6OtgQ6iO79iomJaddQuSOOOMJr/2effbZddR977LFe+7c1LLGkpMRnuOH48eON7du3t3mO+vp647rrrvN5w15dXd2uWv3V1nV7+7N161af4biDBg1qMbDu6/777/f5XZ5zzjntqnPvl9Vq7dIhsq1p/lpy+umnd/k5mg8xPvPMM1tt2/w5uPfrxBNPNEpLS9t13vvuu8/rusj9KS8vN04//fR2/51u7XcYFRVlvPPOO23u+9FHH/n8rXr00Ufb3KehocHnEo64uDhj1apVbe739ttv+4Q8f4OoWe8bmj+HRo8ebVRVVbV5jn19+umnxsaNG/1uj+BDEAW6SXcF0Zb+CN58882ttm/+R+HPf/6z3+cqKSkxhgwZ4rX/+vXrW23fUhDt3bv3fntSDcMwXnjhhVbfkPgT9KZNm+a138UXX+z399le48aN8zrXu+++u999Wvre/vWvf/l1vgcffNDnTXJbioqKfN7s3HfffX6d67nnnjMtiDa/7mjcuHFdfo62BEsQ3d+b1+aa91SccMIJfu+7fv16r33Dw8Pb7MW74447vNoff/zxXj09bWlqajLOOOMMr/0ff/xxv2ttj84E0enTp3vta7PZ/A40N954o8/vs619Wwsx//73v/2ut6Oqqqp8znv55Zd3+Xmaj3A57rjjWm3bUhBNTk5udy9/R9XV1fn0Fu7vd9/a73B/I5P2mjFjhtd+v/3tb9tsv2TJEp9zffTRR36d65lnnulQEDXrfUPza9U7MuEgejauEQV6mJauU2q+MPleX375pb744gvP/eTk5HZdq9W7d2/dddddXtuar/m4P3/729/8WhrknHPOafFamrlz5/o1xf4ll1zidf+bb77xv8h2uuWWW7zuL1++vN3HOPzww/1e1uDyyy/3Wjbmp59+0o4dO1ptP3/+fK/rbYYOHepTc2suvfRSnXDCCX617ayqqiqv+61dg3cgO+2003Taaae1a59LL73U6//D559/vt/rxPdqfk3pGWec0epSD1VVVXriiSc890NDQzV//ny/r1u0WCx66KGHvK7tau/rR3erqKjQ888/77XtlltuUUZGhl/733vvvT6vb3Pnzm1XDSNGjNB1113Xrn06orKy0mdbr169uvw8zY/Z/Hm+P3PmzFF0dHRXltSq8PBw/fnPf/ba1pHX8wkTJmjy5Ml+tW2+XuvatWvV1NTUavvmz5nJkyf7fV3vFVdcoWOPPdavtnuZ+b6h+TqzKSkp/heKAwJBFOhhWvoD7Xa7W2z70ksved2/+uqr2z35xbnnnuv1prelyS5aExoaut9JUPaKjIzUsGHDvLYde+yxGjVqlF/7N/9jm5eX1+Yf985ovn7dypUr232Ma665psXJmlrSu3dvHXHEEV7bfvjhh1bbv/322173r7rqqnatuTZjxgy/23ZG8/+3rU3SdCC7+uqr273PgAEDNHHiRK9tCxYs2O9+DQ0NWrhwode2yy+/vNX2H3zwgdcbxfHjx/s8R/fnsMMO83pufv/999qzZ0+7jtGdVqxY4fVBXmhoaLv+/0dFRenKK6/02rZ06dJ21XDVVVf5/VrQGS39neiO51zzYzafiKst/fv315lnntnVJbWpK17Pp0+f7nfb4cOHe022V11d7TPJ0V4NDQ36v//7P69t7XnNsFgs7X6NMfN9Q/MPH1evXt2u86Dn656V2QF0m5Y+1bbZbC22bf7i3/zNqz9iYmI0dOhQbdq0SdIvbySrqqr8+sR6xIgR7erlSkpK8urJPPHEE/3eNzY2VnFxcZ6ZE5uamlRRUdHuXraamhpt2LBBTqdTlZWVqq6u3m+gbe1NRFvaOztsamqq1q9f77nf2gyRNTU1PjPxtveN3emnn66QkJBuC/J7hYeHe71Jba1n/0BlsVg6PEvwtGnT9M4773juv/DCC7rnnnvaHD2wdOlS7dy503P/kEMO0YQJE1pt3xWvH5J09NFHa9WqVZIkwzC0cuVKTZo0qUPH6mpffvml1/0xY8Zo4MCB7TrGeeedp3/84x+e+8XFxXI4HEpMTPRr/+YzoXeXlmY37Y7nXPNjtvb3qSUnnniiV4DprPLycm3YsEG7du1SRUWFampqZBiGV5vmM8J25PX8d7/7nd9tLRaLUlJS9N1333m2lZWVaciQIT5tv/vuO69Zcu12u7KystpVW3uft2a+b8jMzPSa1femm27SIYcc0u7vET0XQRToYcrLy322RUZG+myrrq72CSQrVqzo0Ke9+4aFpqYm7dixw68g2tIf1rY0/yS9vftHR0d7BbTKykq/guhPP/2k7Oxsvfrqq9qwYUO7A1hrobAtycnJ7WofExPjdb/5Ug97bdiwQQ0NDZ770dHRGjp0aLvOFRUVpfT0dM+biO4SHR3t9X+rpf/bB7IhQ4a0ugzR/px22mnq16+fdu3aJemXN88ff/xxm8Gy+bDcSy+9tM0lEZq/VmzZskX/+7//2+5aCwoKvO47nc52H6O7rFu3zut+e4cxStIRRxyhyMhIr2Vf1q1b51cQDQsL8xnt0F1aes3ujudc82O2Z5jtiBEjOn3+vLw8ZWdn6/XXX9fWrVvbvX97X89jY2PVu3fvdu3j7+t585EvI0aMaHdQHzx4sPr27avdu3fvt63Z7xv++Mc/6u9//7vnubNz506NGzdOmZmZmjx5siZMmKARI0aYMmIAgUEQBXqYloa1JSQk+GzbuXOnzye/N954Y5fVcOihh+63XXuvP2r+pri9b9Kb79/SumT7MgxD999/v+69994W1w70V0u91PvT3p5af7+35p/uJyUldeiPeHJycrcH0YSEBK96g2nIphlauzbTH1arVZdccokeeeQRz7bs7OxWg+iuXbt81tfd37D55tch73u9aGcE0++5eS0duUYtNDRUSUlJXqHB3++xV69epq2PGB0drejoaK9rNv0JJ+3V/DXokEMO8Xvfzjwn3G63/vrXv+rxxx/3+jCuvdr7et6Ra9v9fT1vfg1lS3/r/TFw4EC/ftdmv28YMGCAnn76aV166aVeHwDn5uYqNzdXt9xyi+Li4pSZmakTTzxRWVlZOv7441lT9ADCNaJAD7PvcJ69Wuo57M43e/6Gts5+itndn4JeddVVuv322zsVQiX5/OH2R3d9b80/ze9oj1t3TGLSXPM3JT/88IPq6+u7/bzBorMTsjQPkm+99VarvTkvvvii18/2t7/9rdLS0to8fne9hnT2+daVmr/R76rni78/O7Mm5dmr+XOupb8nnVFYWOjTu5eamur3/h39ebjdbp111ll65JFHOhVCJbV7REx3/p1q3rvcvCfVX/7+vw7E+4aLL75Yy5Yt02GHHdbi42VlZfrwww81a9YsnXjiiRo8eLBuueUWbd++vdtqhXkIokAPs/daq321NKFPaxMYdYWOBK9g8/zzz+vZZ5/12hYdHa3LL79czz33nHJzc/XTTz+psrJS9fX1Mn5Z7srzhc476qijvO67XC6fYWFo3YgRI7yGkrpcLr388ssttm0+LNefScS66zWE50/gNP9b8eOPP/r0YHZGS7OV+zvhXGfcf//9WrZsmde2vn376k9/+pNefvllffPNN9q+fbuqqqrU0NDg9VrefOh4MGl+fW1Hn5P+7heo9w0TJkzQpk2b9Prrr+ucc85ps5d5+/btmjNnjg499FDNnz+/GyqFmRiaC/QwzaeW79+/f4vDZFu6ZqWmpqbFJVIONoZhaNasWV7bxo8fr1deecWvoWHtXY7ATM3/gLd27dH+mHG9ZksTfOTk5PgE1GDV3ZM5+WPatGleM01mZ2fr2muv9Wrz7bffel0LGRUVpQsuuGC/x+7du7dXr8PSpUs7PGFRsIqPj/e631XPl/ZeM2iWE088Uc8995zXto8++kgXXnhhlxz/448/9tnWnol8OqKqqspneZGLLrpI8+fPb3H+hJb2D1bNX887+rrs736BfN8QFhamc889V+eee66ampq0bt06ff755/r888/16aef+lxbXlNTo6uuukqSfGauRs9BjyjQg3z00UfKy8vz2jZp0qQWhwb169fPZ1tXfvLdk33zzTcqKiry3I+Li9Nrr73m9/VJ3XFdVVdp/j04HI4O9UAVFhZ2UUWtO+GEE3yCwH/+859uP+9e7b2muLmOTFLV1S666CKvpRVyc3O1ceNGrzbNe0PPO+88v4ZANn8NORBfP5o/Xzry/76xsdHr9UQK3iA6adIkn5mV/Vn6xx8t9cgfccQR7Z6Yrb3ef/99r5llhw4dqgULFvgVQqXgfj1vPoNzW8t2taaurs7vXt9ged8QEhKiUaNGeXq0f/rpJ61evVrTp0/3WYrs5ptvDqrrztE+BFGgB5kzZ47PtqlTp7bYtnfv3j6zNq5Zs6Zb6uppms+Uedppp/kEorZ8/fXXXV1Sl8nIyPAKWJWVldqyZUu7jlFdXe3zgUd3sFqtmjJlite277//Xp999lm3n1vyvR6tvT0jP/74Y1eW0yHx8fE666yzvLbtGyzcbrfPuoD+ru3bfEjlgfj60XyW1o6sY7hp0yaf699GjhzZqbq6S0JCgk466SSvbR999FG7XyNa8tJLL/l8OHPZZZd1+rj70/z1/IILLmhxqZrWBPPrefNZnIuKito96/S3337r93Wzwfq+wWKx6JhjjtETTzyhnJwcrzBaUVHhtZQVehaCKNBDzJs3Tx9++KHXtqOPPrrN9bZOPvlkr/vNZ808WO27lqIkv9f72yuY/+hFRkb6vLlesmRJu47xzjvvtLt3sKP+/Oc/+yxHMGPGjC69Vqm1IbTNh72191qx1hZpN1vzYPnCCy94fn9vv/22V4/GoYce6vdQyeavH8uWLTvgru8cM2aM1/0vv/zS5/Vhf9544w2v+4MHD273a4qZbrrpJq/7TU1NmjFjRqeOWVZWpttuu81rW0xMjClDJg/k1/OBAwf6zOTc/IOl/Vm0aFG72gf7+4YxY8bonHPO8drW/MMI9BwEUaAHeP/993XzzTd7bbNYLHr44Yfb3O+8887zuv/cc8/p559/7vL6eprmn5a3Z4ilw+HQK6+80sUVda3TTz/d6/4zzzzTrtlou2qZDn8MHTrUc53PXuvXr9ftt9/e6WMbhqG//e1vWr9+fYuPH3744V73v/jiC7+PXVxcrKVLl3aqvq5y0kkneb353r59u2filubDci+77DK/Z/mcOHGi1/DGTZs26a233up8wUFk7NixXusXNzQ06Mknn/R7/5qaGp8JU0499dQuq687nHLKKRo7dqzXto8++khPPfVUh495ww03+Cz3M3PmTFOGKHfm9XzVqlWmjcDoqOajRh555BG/R284HI52D73uCe8bmofz6urqAFWCziKIAkGsvr5e//jHP3Tqqad6LQ4t/XJdRPM3E81NnDhRxx13nOe+y+XSRRdd1KnepgOhR2Tw4MFe9z/44AO/hi41Njbq0ksv7daZBbvClVde6XUd2JYtW/Tggw/6te/zzz9v+huz+++/X0lJSV7bHnroId1yyy0dPuaOHTt02mmn6b777mv1/2xmZqbX/dWrV/u9nMV1110XNEvNhISE+AzRX7BggZxOpz744IM227Wlb9++uu6667y2TZ8+vVNDkoPt9SM2NtbnZ/LAAw/4PTT9zjvvVHFxsde2G264ocvq6y5PPfWUzwQ0M2bM0KuvvtruY91888164YUXvLYNGzZMf/3rXztVo7+av56/++67fu1XXV1tytDhzrr66qu9LrcoLi7W9OnT9/tccrlcmjp1arsvOTDzfUNHl9ppvsZ182tp0XMQRIEg5HA4NHv2bCUnJ+uuu+7yGVp4/vnn+8wS2Jo5c+Z4/RH79NNPddJJJ8nhcPhdj2EY+uSTT3T66adr8eLFfu8XrMaOHevVK5Sfn68777yzzX2qq6t17rnnKicnp5ur67ykpCRdeumlXttmzZqlhQsXtrnf+++/r6uvvro7S2tRbGyslixZ4tUzJf3yf/cPf/hDqz2aLamqqtKcOXOUnp6+3x7LQw891Oc6yCuvvLLNBe0bGhp0zTXXBN1wvuZvqN955x098sgjXkOsm/ec+uPWW2/VIYcc4rm/Y8cOnXjiie3+sGLjxo2aPn26aeGkPW6++Wavnt/a2lpNmDBB27Zta3O/hx56SA899JDXtnPPPVfDhg3rljq7Unp6up555hmvbY2NjZoyZYr++te/yuVy7fcYTqdT5557rs/InJiYGL3xxhvtuk6zM5pfnvLZZ5/p6aefbnOf3bt36+STT+7Q5D9mS0pK0syZM722LVy4UJMnT/bphd5r27ZtOuWUUzyz7O87oZk/zHrfMGLECN17773tGg7/7rvv+rz+jhs3zu/9EWQMAN1i6tSphiTP19ChQ40nn3zS5+vRRx817rrrLuPGG280zj33XGPQoEFe+zX/mjlzptHQ0NCuWubOnetzHLvdblx55ZXG0qVLjZKSEq/2dXV1xvfff28sWrTIuPrqq42BAwd69nvttddaPU92drbXOaZOndqpn1l2dna79h8yZIjX/gUFBa22Pfvss31+JmeccYbx6aefGm6329OusLDQeOyxx7x+L2PHjvXZd3/a27659v5sSkpKjAEDBvic9/zzzzc+/fRTo76+3jAMw2hoaDByc3ONK6+80rBYLIYkw2q1GkcffXSnfhcdkZOTY0RHR/vUHBISYpx++unGk08+aeTl5RnV1dWefZqamoyioiLjjTfeMK644gqjV69ePvuvWbOm1XM+++yzPu2HDRtmvPHGG17ncTqdxn/+8x/jiCOO8LQbM2aM135jx45t8/tbvnx5u9q31+9+9zuv4+/9fe79eumllzp03FWrVhl2u93n2KeccoqxaNEi48cffzSampo87RsbG43CwkLj7bffNm677TZj2LBhnv1mzJjRVd+ul4KCAq/6hgwZ0q79n3rqKZ//B5GRkcadd95pbN682fP91dbWGsuWLTMmTJjg0/6QQw4xdu/e3a11drWHHnqoxb8zSUlJxh133GF8++23RlVVlaf9nj17jOXLlxvTp09v8bkWFRVlfPrpp36fv7Ov+Ybxy2tA89crSca0adOM1atXe/5eNjU1GZs2bTLuvfdeIz4+vtXX8/39Trrid9j8nMuXL2+zvcvlMkaOHOnzPUZERBhnn3228Y9//MOYO3euceeddxoTJkwwrFarp82kSZN8zpeTk7PfGs1437D3/1BoaKgxbtw44+GHHzY+/fRTo7S01KtdVVWVsWLFCuPKK680QkNDvWo66qijvF5/0LMQRIFu0vwPbGe/jjzySGPFihUdruf+++83QkJCWj2+zWYz+vbta0RERLRZx4ESRLds2WLExcW1+D2GhYUZffr0McLDw30eGzRokOFwOHy270972zfXkZ/NF198YcTExLT4PYaEhBjx8fE+f9QlGQ899FCXvEHsiO+++85IS0vb7/MhKiqq1d/Rvl+DBw82HA5Hq+dramoysrKyWtzXYrEY8fHxLT4nJkyYYHz00Ude2wIdRBcsWNDqzyE+Pt6ora3t8LE/+OADrzfvzb9CQ0ON3r17GzExMT4BeN+vYA2ihmEYN998c6t1W63WNr//vn37Grm5uabU2dWee+45nw8amn/Fxsbu92/D4MGDjdWrV7fr3F31OvPFF1+0+lpgtVqNPn36GGFhYT6PjRgxwvjuu+/a9TsJRBA1DMPYsWOHkZGRsd/Xxubf3549e3w+pFq5cqVfdXb3+4aWPszY9/fWt29fIzY2ts3Xte+//749P3oEGYbmAkEsIiJC5513npYuXaq1a9d2amHwW2+9VR988IHPRf571dXVaffu3V7rsTXXr18/DRo0qMM1BJPDDjtMS5YsaXHt0IaGBpWUlPhcE3P44YcrJyfH55qkYDVmzBi9//77SkhI8HmsqalJpaWlXkM3LRaL7rnnHv3lL38xs0wvI0eO1Nq1azVr1qw217qsrq5u8Xe0V58+fXT//fdry5Ytbf6+LBaLXn/9dZ/rRSXJMAyVlpb6PCfOOeccLV682Ge230Bra33Q5uuNtteECRP0zTfftPoa1NjYqD179qiysrLV68HsdrvPBFHBZM6cOZo7d26L60/W19ertLS0xf1GjhypL7/80uu6up7k0ksv1dq1a32WddlXRUVFq38bwsLCdPXVV2v9+vU65phjuqvMNo0ZM0YLFy70ue5V+uV3V1JS4nM94pgxY/Txxx8rNjbWrDI7pX///vrss8905ZVX+jXh2AUXXKDPPvtM8fHxqqio8Hqs+Yzhrenu9w1tfR/19fXavXu3T+17DR8+XF988YUyMjLa+A4Q7AiiQABZLBbZbDb16tVLqampGjNmjP74xz9q9uzZWr58ufbs2aPXXntNEydO7JLznXTSScrLy9Nzzz2nE044wWdh6JYMGTJEl19+uZYsWaKff/5Zxx9/fJfUEgx+97vfac2aNbrsssva/Fkccsghuu+++7RmzRoddthhJlbYeWPGjNGmTZv05z//uc21UseOHatPP/1Uf/vb30ysrmURERG6++675XA49Mgjj2jMmDFe1yu1Jj4+XmeeeaZef/11/fzzz7r11lv9Cl99+vRRTk6O/vnPf7b4wcRe6enpeuGFF/TGG2+0GFYCLSoqSueff36Lj/m7dmhbUlJStGLFCuXk5Oiss87y6w18fHy8zj77bD3zzDPavn27/vSnP3W6ju50/fXXa8uWLbruuuvUv3//VttZLBYdffTRys7O1po1azR06FATq+x66enp+uijj/TFF19o6tSpfq2rPGTIEN1yyy3avHmznnrqKb/DTXeZPHmyVq9erbPPPttrsrbmDjvsMM2bN0+ffvppm7/jYBQfH69nnnlG69at02233aZjjjlGAwYMUFhYmGJjYzVq1Chdf/31Wr16tV5++WX16tVLku8SN+1ZN7s73zf88MMPevbZZzV58mSva9FbY7FY9Nvf/lbz58/X2rVrdcQRR/j9fSA4WYzWProEcMCrqanRqlWrVFxcrJKSElVVVSkqKkq9evVSSkqKjjjiiINmNrrKykp98cUX2rZtm8rKymS1WjVw4ECNHDlSRx55pN9LXgSz+vp6ffbZZ8rPz9fOnTtls9mUlJSkMWPGBH1Pd3V1tb777jtt27ZNu3btUk1NjWw2m+Li4tS3b1+NGDGiSz4kaGxs1Ndff63vv/9eJSUlMgxDAwcO1LHHHqvhw4d3wXdy4GhsbNSaNWu0detWlZSUqKysTDabTTExMRo8eLAOP/xwpaSktBkKgplhGPr222+1efNmz/+5Pn36aMCAARo9erQGDBgQ6BK7TVNTkzZu3KhNmzbpp59+UnV1tUJCQhQTE6MhQ4ZoxIgRSk5ODnSZrdqzZ48+++wz/fjjj6qoqJDdbtegQYN01FFHBXWvfHf4+eefvV7f+/Tpo927d3f4eN35vqG4uFh5eXkqKChQWVmZampqFBERoV69eumwww7TkUceacqSQDAPQRQAAAA4AD355JNeyzCdcsopnnWGgUDrmR9TAgAAAGhVbW2tz/I6bV0LDJiNIAoAAAAEsdYmZmtNY2OjrrrqKm3dutWzzW63+6w5DAQSQRQAAAAIYrfddpvOO+88ffTRR6qvr2+z7TfffKPx48frxRdf9Np+7bXXtjkhG2A2rhEFAAAAgtiNN96oxx57TNIvy6+MHj1aw4cPV//+/RUZGamKigoVFRXpiy++0Pr16332z8jI0OrVqzu1jBPQ1YJrETQAAAAArSorK9P777+v999/36/2o0aN0ttvv00IRdBhaC4AAAAQxFJTU2Wz2dq1T0xMjG699VZ9/vnnSkxM7KbKgI5jaG4H7Ny5U7m5ucrNzdXXX3+tr7/+WiUlJZKkqVOnasGCBfs9RlNTk3744Qev46xbt85zMfry5cuVlZXVjd8FAAAAeoqKigp98MEHnuG3hYWF2r17t2pqahQWFqb4+Hj17dtXxxxzjMaOHaszzzxT8fHxgS4baBVDczugKxaxfuGFF5i5DAAAAH6JjY3V5MmTNXny5ECXAnQJhuZ2UlJSkiZMmNDu/fbtiLZarTr66KM1YsSIriwNAAAAAIISQbQD7rzzTr3zzjvavn27fvzxRz311FPtPsawYcM0d+5cffXVV6qoqNA333yjc845pxuqBQAAAIDgwtDcDvjHP/7R6WNkZmYqMzOzC6oBAAAAgJ6FHlEAAAAAgKnoET2IuVwuz6LH/fr1U1gY/x0AAACAg1FDQ4N27dolSRoxYkS3rz1L8jiIrV+/nuHBAAAAALzk5ubquOOO69ZzEEQPYMXFxW0+vmPHDpMqAQAAAID/IogewBITE/1um5ubq4SEhG6sBgAAAECwcjqdntGS/fr16/bzEUQhSUpISNDgwYMDXQYAAACAADNj7hiC6AHM4XC0+fi+n3oAAAAAgFkIogcwejgBAAAABCPWEQUAAAAAmIogCgAAAAAwFUEUAAAAAGAqgigAAAAAwFQEUQAAAACAqZg1twM+//xzbd261XN/9+7dnttbt27VggULvNpfdtllLR6nebu1a9d6br///vsqLCz03D/ssMN0wgkndLRkAAAAAAgaFsMwjEAX0dNcdtlleu655/xu39qP2GKx+H2MqVOn+gTXziouLlZiYqKkX9YcZbkXAAAA4OBkdjZgaC4AAAAAwFQMze2ABQsWdEnvJJ3RAAAAAA5G9IgCAAAAAExFEAUAAAAAmIogCgAAAAAwFUEUAAAAAGAqgigAAAAAwFQEUQAAAACAqQiiAAAAAABTEUQBAAAAAKYiiAIAAAAATEUQBQAAAACYiiAKAAAAADAVQRQAAAAAYCqCKAAAAADAVARRAJKkujq3ysqrVFfnDnQpAAAAOMCFBboAAIHjcrmVs3Ktli7PVYHD6dmekpigSeMylTV6lOz28ABWCAAAgAMRQRQ4SG3IK9TseYtUVlGtsooqlZZXqqGxUWGhoSotr1J+kVMLF3+s22ZMUUZacqDLBQAAwAGEobnAQWhDXqFmzcmWw7lL323api2FxaqpdUmSampd2lJYrHWbtsnh3KVZc7K1Ia8wsAUDAADggEIQBQ4yLpdbs+ctUklZhTbnO2S3WZUxNFnD01OUljJYw9NTlDE0WTabVZvzHSopq9DseYvkcnHtKAAAALoGQRQ4yOSsXKuyimrlFzkVExWhtJRERUXavdpERdqVlpKomKgIFRQ5VVZRrZyVawNTMAAAAA44BFHgILN0ea7KKqrkrq9XYkJ/hYRYWmwXEmJRYkJ/1dXXq6yiSstyck2uFAAAAAcqgihwEKmrc6vA4VRpeaUi7TafntDmoiLtirTbVFpeqfwiJ0u7AAAAoEsQRIGDSO2v13k2NDYqPNzq1z7hVqsaG5u89gcAAAA6gyAKHEQifl0TNCw0VG53vV/7uOvrFRoa4rU/AAAA0BkEUeAgYrOFKyUxQfG9YlTjqlN1javN9tU1LtW46hTfK0apSQmy2QiiAAAA6DyCKHCQmTQuU3Gx0Qq3WuVw7lRTk9Fiu6YmQw7nTtmsVsXFRmtiVqbJlQIAAOBARRAFDjJZo0cpLjZKqUkJqqyuVV6Bw6dntLrGpbwChyqra5WSlKC42ChljR4VmIIBAABwwAkLdAEAzGW3h+u2GVM0a0620lMTlV/k1IYthYq02xRutcpdX68aV51sVqvSUxPVJy5Wt8+YIjvXhwIAAKCLEESBg1BGWrLumTlNs+ctUkxUpMoqqlRaXqnGxiZFRtg1aGA/xcVGKy42SrfPmKJhacmBLhkAAAAHEIIocJDKSEvW/AdmKmflWi3LyVV+kdPzWGpSgiZmZSpr9Ch6QgEAANDlCKLAQcxuD9cpWZk6JStTdXVu1brcirCHMzsuAAAAuhVBFICkX5Z2IYACAADADMyaCwAAAAAwFUEUAAAAAGAqgigAAAAAwFQEUQAAAACAqQiiAAAAAABTEUQBAAAAAKYiiAIAAAAATEUQBQB0SF2dW2XlVaqrcwe6FAAA0MOEBboAAEDP4XK5lbNyrZYuz1WBw+nZnpKYoEnjMpU1epTs9vAAVggAAHoCgigAwC8b8go1e94ilVVUq6yiSqXllWpobFRYaKhKy6uUX+TUwsUf67YZU5SRlhzocgEAQBBjaC4AYL825BVq1pxsOZy79N2mbdpSWKyaWpckqabWpS2FxVq3aZsczl2aNSdbG/IKA1swAAAIagRRAECbXC63Zs9bpJKyCm3Od8husypjaLKGp6coLWWwhqenKGNosmw2qzbnO1RSVqHZ8xbJ5eLaUQAA0DKCKACgTTkr16qsolr5RU7FREUoLSVRUZF2rzZRkXalpSQqJipCBUVOlVVUK2fl2sAUDAAAgh5BFADQpqXLc1VWUSV3fb0SE/orJMTSYruQEIsSE/qrrr5eZRVVWpaTa3KlAACgpyCIAgBaVVfnVoHDqdLySkXabT49oc1FRdoVabeptLxS+UVOlnYBAAAtIogCAFpV++t1ng2NjQoPt/q1T7jVqsbGJq/9AQAA9kUQBQC0KuLXNUHDQkPldtf7tY+7vl6hoSFe+wMAAOyLIAoAaJXNFq6UxATF94pRjatO1TWuNttX17hU46pTfK8YpSYlyGYjiAIAAF8EUQBAmyaNy1RcbLTCrVY5nDvV1GS02K6pyZDDuVM2q1VxsdGamJVpcqUAAKCnIIgCANqUNXqU4mKjlJqUoMrqWuUVOHx6RqtrXMorcKiyulYpSQmKi41S1uhRgSkYAAAEvbBAFwAACG52e7humzFFs+ZkKz01UflFTm3YUqhIu03hVqvc9fWqcdXJZrUqPTVRfeJidfuMKbJzfSgAAGgFQRQAsF8Zacm6Z+Y0zZ63SDFRkSqrqFJpeaUaG5sUGWHXoIH9FBcbrbjYKN0+Y4qGpSUHumQAABDECKIAAL9kpCVr/gMzlbNyrZbl5Cq/yOl5LDUpQROzMpU1ehQ9oQAAYL8IogAAv9nt4TolK1OnZGWqrs6tWpdbEfZwZscFAADtQhAFAHSIzUYABQAAHcOsuQAAAAAAUxFEAQAAAACmIogCAAAAAExFEAUAAAAAmIogCgAAAAAwFUEUAAAAAGAqgigAAAAAwFQEUQAAAACAqQiiAAAAAABTEUQBAAAAAKYiiAIAAAAATEUQBQAAAACYiiAKAAAAADAVQRQAAAAAYCqCKAAAAADAVARRAAAAAICpCKIAAAAAAFMRRAEAAAAApiKIAgAAAABMRRAFAAAAAJiKIAoAAAAAMBVBFAAAAABgKoIoAAAAAMBUBFEAAAAAgKkIogAAAAAAUxFEAQAAAACmIogCAAAAAExFEAUAAAAAmIogCgAAAAAwFUEUAAAAAGAqgigAAAAAwFQEUQAAAACAqQiiAAAAAABTEUQBAAAAAKYiiAIAAAAATEUQBQAAAACYiiAKAAAAADAVQbQDdu7cqXfffVd33nmnJk6cqL59+8pischiseiyyy5r9/GWLVums88+W4MHD5bNZtPgwYN19tlna9myZV1fPAAAAAAEWFigC+iJBgwY0CXHaWpq0tVXX61nn33Wa/tPP/2kn376SW+99ZauvPJKPfXUUwoJ4TMDAAAAAAcG0k0nJSUlacKECR3a94477vCE0KOOOkovvfSScnNz9dJLL+moo46SJM2fP19/+9vfuqxeAAAAAAg0ekQ74M4779Rxxx2n4447TgMGDFBhYaFSUlLadYy8vDzNmTNHknTsscfq008/VUREhCTpuOOO0xlnnKGxY8dq9erVevDBB3X55ZfrsMMO6/LvBQAAAADMRo9oB/zjH//Qaaed1qkhuo8++qgaGhokSY8//rgnhO4VGRmpxx9/XJLU0NCgRx55pOMFAwAAAEAQIYgGgGEYWrJkiSTp8MMP1+jRo1tsN3r0aKWnp0uSlixZIsMwTKsRAAAAALoLQTQACgoK9PPPP0uSxo4d22bbvY//9NNPKiws7O7SAAAAAKDbEUQDYOPGjZ7bhx9+eJtt931806ZN3VYTAAAAAJiFyYoCoLi42HN78ODBbbZNTEz03HY4HB0+T0ucTme7jgcAAAAAXYEgGgCVlZWe29HR0W22jYqK8tyuqqpq13n2DbEAAAAAECwYmhsALpfLczs8PLzNtjabzXO7tra222oCAAAAALPQIxoAdrvdc9vtdrfZtq6uznO7+RIv+7O/obxOp1OZmZntOiYAAAAAdBZBNABiYmI8t/c33La6utpze3/DeJvb3/WnAAAAABAIDM0NgH0D4v4mFNq3V5NrPgEAAAAcCAiiATBs2DDP7R9++KHNtvs+fsQRR3RbTQAAAABgFoJoAKSkpOiQQw6RJK1YsaLNtp9++qkkadCgQUpOTu7u0gAAAACg2xFEA8BisejMM8+U9EuP58qVK1tst3LlSk+P6JlnnimLxWJajQAAAADQXQiiAXLjjTcqNDRUknT99df7LM1SW1ur66+/XpIUFhamG2+80ewSAQAAAKBbMGtuB3z++efaunWr5/7u3bs9t7du3aoFCxZ4tb/ssst8jpGWlqZbbrlF999/v1avXq3f/va3uvXWW3XooYdq27ZteuCBB7RmzRpJ0i233KKhQ4d2y/cCAAAAAGazGIZhBLqInuayyy7Tc88953f71n7ETU1Nuuqqq/Sf//yn1X2vuOIKPf300woJ6frO6+LiYs9MvA6Hg+VeAAAAgIOU2dmAobkBFBISomeffVbvvfeezjzzTB1yyCEKDw/XIYccojPPPFNLly7V/PnzuyWEAgAAAECg0CN6EKNHFAAAAIBEjygAAAAA4ABHEAUAAAAAmIogCgAAAAAwFUEUAAAAAGAqgigAAAAAwFQEUQAAAACAqQiiAAAAAABTEUQBAAAAAKYiiAIAAAAATEUQBQAAAACYiiAKAAAAADAVQRQAAAAAYCqCKAAAAADAVARRAAAAAICpCKIAAAAAAFMRRAEAAAAApiKIAgAAAABMRRAFAAAAAJiKIAoAAAAAMBVBFAAAAABgKoIoAAAAAMBUBFEAAAAAgKkIogAAAAAAUxFEAQAAAACmIogCAAAAAExFEAUAAAAAmIogCgAAAAAwFUEUAAAAAGAqgigAAAAAwFQEUQAAAACAqQiiAAAAAABTEUQBAAAAAKYiiAIAAAAATEUQBQAAAACYiiAKAAAAADAVQRQAAAAAYCqCKAAAAADAVARRAAAAAICpCKIAAAAAAFMRRAEAAAAApiKIAgAAAABMRRAFAAAAAJiKIAoAAAAAMBVBFAAAAABgKoIoAAAAAMBUBFEAAAAAgKkIogAAAAAAUxFEAQAAAACmIogCAAAAAExFEAUAAAAAmIogCgAAAAAwFUEUAAAAAGAqgigAAAAAwFQEUQAAAACAqQiiAAAAAABTEUQBAAAAAKYiiAIAAAAATEUQBQAAAACYiiAKAAAAADAVQRQAAAAAYCqCKAAAAADAVARRAAAAAICpCKIAAAAAAFMRRAEAAAAApiKIAgAAAABMRRAFAAAAAJiKIAoAAAAAMBVBFAAAAABgKoIoAAAAAMBUBFEAAAAAgKkIogAAAAAAUxFEAQAAAACmIogCAAAAAExFEEXQqKtzq6y8SnV17kCXAgAAAKAbhQW6ABzcXC63clau1dLluSpwOD3bUxITNGlcprJGj5LdHh7ACgEAAAB0NYIoAmZDXqFmz1uksopqlVVUqbS8Ug2NjQoLDVVpeZXyi5xauPhj3TZjijLSkgNdLgAAAIAuwtBcBMSGvELNmpMth3OXvtu0TVsKi1VT65Ik1dS6tKWwWOs2bZPDuUuz5mRrQ15hYAsGAAAA0GUIojCdy+XW7HmLVFJWoc35DtltVmUMTdbw9BSlpQzW8PQUZQxNls1m1eZ8h0rKKjR73iK5XFw7CgAAABwICKIwXc7KtSqrqFZ+kVMxURFKS0lUVKTdq01UpF1pKYmKiYpQQZFTZRXVylm5NjAFAwAAAOhSBFGYbunyXJVVVMldX6/EhP4KCbG02C4kxKLEhP6qq69XWUWVluXkmlwpAAAAgO5AEIWp6urcKnA4VVpeqUi7zacntLmoSLsi7TaVllcqv8jJ0i4AAADAAYAgClPV/nqdZ0Njo8LDrX7tE261qrGxyWt/AAAAAD0XQRSmivh1TdCw0FC53fV+7eOur1doaIjX/gAAAAB6LoIoTGWzhSslMUHxvWJU46pTdY2rzfbVNS7VuOoU3ytGqUkJstkIogAAAEBPRxCF6SaNy1RcbLTCrVY5nDvV1GS02K6pyZDDuVM2q1VxsdGamJVpcqUAAAAAugNBFKbLGj1KcbFRSk1KUGV1rfIKHD49o9U1LuUVOFRZXauUpATFxUYpa/SowBQMAAAAoEuFBboAHHzs9nDdNmOKZs3JVnpqovKLnNqwpVCRdpvCrVa56+tV46qTzWpVemqi+sTF6vYZU2Tn+lAAAADggEAQRUBkpCXrnpnTNHveIsVERaqsokql5ZVqbGxSZIRdgwb2U1xstOJio3T7jCkalpYc6JIBAAAAdBGCKAImIy1Z8x+YqZyVa7UsJ1f5RU7PY6lJCZqYlams0aPoCQUAAAAOMARRBJTdHq5TsjJ1Slam6urcqnW5FWEPZ3ZcAAAA4ABGEEXQsNkIoAAAAMDBgFlzAQAAAACmIogCAAAAAExFEA0wl8ulJ554QuPHj1e/fv0UHh6uQw45RJMmTdLLL78c6PIAAAAAoMtxjWgAbd68WWeeeaY2b97std3pdMrpdGrZsmXKzs7WG2+8oejo6ABVCQAAAABdix7RANm5c6dOPvlkTwidPHmy3n33XX377bd69913NXnyZEnShx9+qAsvvDCQpQIAAABAlyKIBsjdd98th8MhSfr73/+uV199VaeeeqqOOuoonXrqqXr11Vd15513SpLee+89vf7664EsFwAAAAC6jMUwDCPQRRxsGhsb1adPH5WXl2vIkCHatm2bQkNDW2yXmpqqoqIiHXPMMVq9enWX1lFcXKzExERJksPh0ODBg7v0+AAAAAB6BrOzAT2iAbBlyxaVl5dLkk4++eQWQ6gkhYaG6uSTT5YkffPNNyooKDCtRgAAAADoLgTRACgpKfHcHjBgQJtt9338s88+67aaAAAAAMAszJobAPvOgLu3Z7Q1+z6+cePGdp2nuLi4zcedTme7jgcAAAAAXYEgGgCHHXaYrFar6uvr9emnn7bZdt/Hi4qK2nWevWO8AQAAACCYMDQ3AKKiovT73/9ekrRu3Tq99NJLLbZ76aWXtH79es/9yspKU+oDAAAAgO5Ej2iA3HXXXfrkk0/U0NCgqVOnatu2bbr00kuVkJAgp9Op559/XnfffbfCw8PldrslSbW1te06x97lYVrjdDqVmZnZ4e8BAAAAADqCIBogo0eP1lNPPaVrrrlG9fX1mjVrlmbNmuXVJiIiQg8++KD+9Kc/SZJiYmLadQ6WYwEAAAAQjBiaG0CXX365Vq1apbPPPltRUVGe7WFhYTrjjDP07bff6thjj/Vsj4+PD0SZAAAAANCl6BENsKOPPlpvvvmmGhoa5HQ65Xa7NWjQINntdknSwoULPW0zMjICVSYAAAAAdBmCaJAICwtrcZbbb775xnOb6zkBAAAAHAgYmhvEGhsb9eabb0r6ZSmWMWPGBLgiAAAAAOg8gmgQe/bZZz1rh15zzTUKDQ0NcEUAAAAA0HkE0QD66aefWn3s//7v/3TjjTdKktLS0nTzzTebVBUAAAAAdC+uEQ2g4cOHa+zYsTr11FOVkZEhm82moqIiLV68WC+++KKamprUu3dvvfrqq57JiwAAAACgpyOIBlB9fb2WLFmiJUuWtPh4RkaGXnzxRR155JEmVwYAAAAA3YcgGkDz58/Xhx9+qNzcXDmdTlVVValfv34aOXKkJk+erEsuuURWqzXQZQIAAABAlyKIBtCFF16oCy+8MNBlAAAAAICpmKwIAAAAAGAqgigAAAAAwFQEUQAAAACAqQiiAAAAAABTEUQBAAAAAKYiiAIAAAAATEUQBQAAAACYiiAKAAAAADAVQRQAAAAAYCqCKAAAAADAVARRAAAAAICpCKIAAAAAAFMRRAEAAAAApiKIAgAAAABMRRAFAAAAAJiKIAoAAAAAMBVBFAAAAABgKoIoAAAAAMBUBFEAAAAAgKkIogAAAAAAUxFEAQAAAACmIogCAAAAAExFEAWAA0hdnVtl5VWqq3MHuhQAAIBWhQW6AABA57hcbuWsXKuly3NV4HB6tqckJmjSuExljR4luz08gBUCAAB4I4gCQA+2Ia9Qs+ctUllFtcoqqlRaXqmGxkaFhYaqtLxK+UVOLVz8sW6bMUUZacmBLhcAAEASQ3MBoMfakFeoWXOy5XDu0nebtmlLYbFqal2SpJpal7YUFmvdpm1yOHdp1pxsbcgrDGzBAAAAvyKIAkAP5HK5NXveIpWUVWhzvkN2m1UZQ5M1PD1FaSmDNTw9RRlDk2WzWbU536GSsgrNnrdILhfXjgIAgMAjiAJAD5Szcq3KKqqVX+RUTFSE0lISFRVp92oTFWlXWkqiYqIiVFDkVFlFtXJWrg1MwQAAAPsgiAJAD7R0ea7KKqrkrq9XYkJ/hYRYWmwXEmJRYkJ/1dXXq6yiSstyck2uFAAAwBdBFAB6mLo6twocTpWWVyrSbvPpCW0uKtKuSLtNpeWVyi9ysrQLAAAIOIIoAPQwtb9e59nQ2KjwcKtf+4RbrWpsbPLaHwAAIFAIogDQw0T8uiZoWGio3O56v/Zx19crNDTEa38AAIBAIYgCQA9js4UrJTFB8b1iVOOqU3WNq8321TUu1bjqFN8rRqlJCbLZCKIAACCwCKIA0ANNGpepuNhohVutcjh3qqnJaLFdU5Mhh3OnbFar4mKjNTEr0+RKAQAAfBFEAaAHyho9SnGxUUpNSlBlda3yChw+PaPVNS7lFThUWV2rlKQExcVGKWv0qMAUDAAAsI+wQBcAAGg/uz1ct82YollzspWemqj8Iqc2bClUpN2mcKtV7vp61bjqZLNalZ6aqD5xsbp9xhTZuT4UAAAEAYIoAPRQGWnJumfmNM2et0gxUZEqq6hSaXmlGhubFBlh16CB/RQXG6242CjdPmOKhqUlB7pkAAAASQRRAOjRMtKSNf+BmcpZuVbLcnKVX+T0PJaalKCJWZnKGj2KnlAAABBUCKIA0MPZ7eE6JStTp2Rlqq7OrVqXWxH2cGbHBQAAQYsgCgAHEJuNAAoAAIIfs+YCAAAAAExFEAUAAAAAmIogCgAAAAAwFUEUAAAAAGAqgigAAAAAwFQEUQAAAACAqQiiAAAAAABTEUQBAAAAAKYiiAIAAAAATEUQBQAAAACYiiAKAAAAADAVQRQAAAAAYCqCKAAAAADAVARRAAAAAICpCKIAAAAAAFMRRAEAAAAApiKIAgAAAABMRRAFAAAAAJiKIAoAAAAAMBVBFAAAAABgKoIoAAAAAMBUBFEAAAAAgKkIogAAAAAAUxFEAQAAAACmIogCAAAAAExFEAUAAAAAmIogCgAAAAAwFUEUAAAAAGAqgigAAAAAwFQEUQAAAACAqQiiAAAAAABTEUQBAAAAAKYiiAIAAAAATEUQBQAAAACYiiAKAAAAADAVQRQAAAAAYCqCKAAAAADAVARRAAAAAICpCKIAAAAAAFMRRAEAAAAApiKIAgAAAABMRRAFAAAAAJiKIAoAAAAAMBVBFAAAAABgKoIoAAAAAMBUBFEAAAAAgKkIogAAAAAAUxFEAQAAAACmIogCAAAAAExFEAUAAAAAmIogCgAAAAAwFUEUAAAAAGAqgmgQcLvdmj9/vv7whz8oISFBNptN0dHRSk9P17Rp0/Tll18GukQAAAAA6DJhgS7gYPfjjz/q1FNP1YYNG7y2u91u5eXlKS8vTwsWLND111+vxx57TBaLJUCVAgAAAEDXoEc0gOrr671C6MiRI7VgwQJ99dVX+vDDD3XnnXcqKipKkvT444/rgQceCGS5AAAAANAlLIZhGIEuwh8//PCDnE6n9uzZo5qaGhmGoUsvvTTQZXXK66+/rsmTJ0uSjj/+eH322WcKDQ31avPNN9/o+OOPV319veLi4rRr1y6FhXVNR3ZxcbESExMlSQ6HQ4MHD+6S4wIAAADoWczOBkE9NHfp0qV6+umn9dlnn6msrMzn8daC6L///W+53W5JUmpqqs4666xurLLj9r3287bbbvMJoZJ0zDHH6LTTTtPixYtVVlamTZs2acSIEWaWCQAAAABdKiiD6Pr163XJJZfo+++/lyS11Gnb1rWSK1eu1EsvvSRJio2N1cSJE2Wz2bqn2E7YG5alXwJzaw499NAW9wEAAACAnijorhFdtGiRfvOb3+j777/3BNB9Q6c/k/XccMMNMgxDhmGooqJCb731VneV2ynp6eme2/n5+a2227Ztm6RfvvehQ4d2e10AAAAA0J2CKoi+//77uuyyy+RyuTzbDMPQgAEDNHHiRB133HEt9o42l5mZqZSUFE9offfdd7ut5s646KKLFBsbK0l64IEH1NjY6NNmzZo1eu+99yRJU6ZM8bQHAAAAgJ4qaIbmlpeX65JLLlFDQ4MsFosMw9Cxxx6rBx98UGPHjpUkPfXUU/r666/9Ot6ZZ56pRx99VJL0ySefdFfZndK3b1+98MILuuiii/TFF1/ouOOO04033qi0tDRVVVXpiy++0EMPPSS3262jjz5aDz30ULuOX1xc3ObjTqezM+UDAAAAQIcETRB94IEHtGfPHk8v5jnnnKNFixYpPDy8Q8c74YQTPEF0x44dKi4uDspZYc844wx98803euihh/Tss89q6tSpXo8PGDBA99xzj6666ipFRka269h7Z70CAAAAgGASNENzn3vuOU9PaGpqqhYuXNjhECr9sibnvn744YfOltgt3G63nn/+eS1ZsqTFYcc7duzQwoUL9fHHHwegOgAAAADoekERRL/77jvPMFGLxaJbb71Vdru9U8dMSUnxHE+Sfvzxx84V2Q2qq6t10kknafbs2dqzZ4/+53/+R5s2bVJdXZ3Ky8v14Ycf6oQTTtDq1at11lln6eGHH27X8R0OR5tfubm53fSdAQAAAEDrgmJo7saNGyX9MjGRxWLRaaed1uljhoaGKioqSjU1NZKkioqKTh+zq91111367LPPJMlnWG54eLhOPvlkjRs3ThMmTNDy5ct1yy23aPz48TryyCP9On4wDkUGAAAAgKDoEd25c6fndkREhAYOHNglx7Xb7Z7hrrW1tV1yzK5iGIb+85//SJLS0tJ8rg3dKywsTPfcc48kqampSQsWLDCrRAAAAADoFkERRPddrqWzQ3L3VVFR4Rma26tXry47blfYsWOH9uzZI0k66qij2mx7zDHHeG4H67WuAAAAAOCvoAiiffv29dwuLy/vkmPu3LlT9fX1nvt9+vTpkuN2lbCw/46KbmhoaLPtvt/HvvsBAAAAQE8UFEG0f//+nttNTU1av359p4/55ZdfSpJnaO6QIUM6fcyu1Lt3b8XGxkqSvvrqqzbD6IoVKzy3907CBAAAAAA9VVAE0czMTEn/neF26dKlnT7myy+/7LkdERGh4447rtPH7EohISE69dRTJUk///yz7rvvvhbblZaW6tZbb/Xc74qJnAAAAAAgkIIiiA4YMMAzE6xhGPr3v/+t6urqDh9vw4YNeuONN2SxWGSxWHTiiScG5ZDWO++8U5GRkZJ+mUH3jDPO0BtvvKE1a9boq6++0iOPPKJRo0Z5ZhUeP368JkyYEMiSAQAAAKDTgiKIStLUqVM9y7f8/PPPuvbaazt0nPLycl144YVqbGz0DMudMWNGV5baZQ4//HAtWbLEc43sO++8o/POO09HH320xowZo7/85S8qKiqSJP3+97/Xa6+9FshyAQAAAKBLBE0Qve6665SYmCjpl17RRYsW6fzzz9fu3bv9PsbatWs1ZswYbdiwwdMbOnLkyKAeznrSSSfphx9+0AMPPKCsrCz169dPVqtVERERSklJ0fnnn6+33npLH3/8seLj4wNdLgAAAAB0msXY220YBN5//32dfvrpampq8vSOxsbG6qKLLtIpp5yib775xrOmpsVi0aZNm7R7926tWbNG7733nj744APPsQzDUEREhL788kvPsF94Ky4u9oR/h8OhwYMHB7giAAAAAIFgdjYIqiAqSU8++aRmzJjhmbhobyDda99y992+b9u9/z7//PO6+OKLzSm8ByKIAgAAAJDMzwZBMzR3r+nTp+uVV15RTEyMVwg1DKPFULr3S5InhEZHR2vx4sWEUAAAAAAIQkEXRCVp8uTJ+vbbbzVlyhSFhoZ6Bc29/+77Jf23p/S8887TN998ozPOOCMwxQMAAAAA2hR8a5r8KjU1VQsXLtQ///lPvf7661qxYoVWrlyp3bt3ew3PjYmJ0ahRo3TyySfrnHPO0bBhwwJYNQAAAABgf4LuGtH9MQxDpaWlcrvd6t27t8LDwwNdUo/FNaIAAAAAJPOzQdD2iLbGYrGod+/egS4DAAAAANBBQXmNKAAAAADgwEUQBQAAAACYiiAKAAAAADBV0FwjWllZqRtvvNEzI+7JJ5+siy66qEPHWrRokT7++GNJUkhIiObNmyebzdZltQIAAAAAOi5ogujChQuVnZ3tWRf0hhtu6PCxhg0bpksuucRzrBNPPFFTp07tkjoBAAAAAJ0TNENzX3nlFUm/LM+SmZmpUaNGdfhYo0aN0m9+8xtP7+qLL77YFSUCAAAAALpAUATR6upqffXVV7JYLLJYLJo8eXKnj3neeedJ+iXYfv7553K5XJ0+JgAAAACg84IiiK5fv1719fWeHswTTjih08c88cQTPbfr6uq0fv36Th8TAAAAANB5QRFEN2/e7HX/yCOP7PQxR44cKUme60SbnwMAAAAAEBhBEURLSko8t6Oiorpkhlu73a7o6OgWzwEAAAAACJygCKJ1dXWe21artcuOu++xqquru+y4AAAAAICOC4ogGh8f77ldXl6upqamTh+zqalJZWVlnvsxMTGdPiYAAAAAoPOCIoj27dvXc9swDG3cuLHTx9y4caNn8iNJ6tevX6ePCQAAfNXVuVVWXqW6OnegSwEA9BBhgS5AktLT0yX9d2KhZcuWafjw4Z065tKlSyX9EmwtFotSU1M7VyQAAPBwudzKWblWS5fnqsDh9GxPSUzQpHGZyho9SnZ7eAArBAAEM4uxb7dhAA0cOFC7du2SYRhKSEjQtm3bZLfbO3Ss2tpaHXbYYdq+fbsMw1BcXJxKSko8QRe/KC4uVmJioiTJ4XBo8ODBAa4IANATbMgr1Ox5i1RWUa2yiiqVlleqobFRYaGhiu8Vo7jYaMXFRum2GVOUkZYc6HIBAH4wOxsExdBcSZo4caKn93L79u26/vrrO3ysP/3pT3I6f/l01mKx6A9/+AMhFACALrAhr1Cz5mTL4dyl7zZt05bCYtXUuiRJNbUubSks1rpN2+Rw7tKsOdnakFcY2IIBAEEpaILorbfeqpCQX8oxDEP/+c9/NH36dK8Zdfenrq5O1157rbKzs2WxWDzB9q9//Wt3lQ0AwEHD5XJr9rxFKimr0OZ8h+w2qzKGJmt4eorSUgZreHqKMoYmy2azanO+QyVlFZo9b5FcLq4dBQB4C5ogevjhh+uPf/yjJzwahqGnn35aI0eO1NNPP63KyspW962oqND//u//auTIkXrmmWck/ffa0AsvvFBHHnmkWd8GAAAHrJyVa1VWUa38IqdioiKUlpKoqEjvy2iiIu1KS0lUTFSECoqcKquoVs7KtYEpGAAQtIJisqK95s2bpzVr1mjdunWeMLplyxZNnz5dM2bM0LBhw3TooYcqLi5OklRWVqatW7d6Zsjde7nr3n1HjBihp556KoDfEQAAB46ly3NVVlEld329hiYPUkhIy5e9hIRYlJjQXxu2FKqsokrLcnJ1SlamydUCAIJZUAXRyMhIvfPOO5o4caI2btzoua7TMAw1NjZq/fr1+v7777322XeupX3bZ2Rk6J133lFUVJR53wAAAAeoujq3ChxOlZZXKtJu8+kJbS4q0q5Iu02l5ZXKL3Kqrs4tm41ZdAEAvwiaobl7JSYmKjc3V1OmTPH0closFs9Xc/s+trf9H//4R61atcoz6xMAAOic2l+v82xobFR4uNWvfcKtVjU2NnntDwCAFIRBVPqlZ3ThwoX69ttvNXnyZNntdk/IbO0rIiJCF110kdauXavnnntOkZGRgf42AAA4YET8uiZoWGio3O56v/Zx19crNDTEa38AAKQgG5rb3KhRo/TKK6+ovr5eq1at0rfffqtdu3appKREktSnTx/169dPxxxzjDIzM2W1+vcJLQAAaB+bLVwpiQkqLa/S7tJyVde42hyeW13jUo2rToMG9lNqUgLDcgEAXoI6iO5ltVp1wgkn6IQTTgh0KQAAHLQmjctUfpFT4VarHM6dSktJbHHCoqYmQw7nTtmsVsXFRmsiExUBAJoJyqG5AAAg+GSNHqW42CilJiWosrpWeQUOVde4vNpU17iUV+BQZXWtUpISFBcbpazRowJTMAAgaPWIHlEAABB4dnu4bpsxRbPmZCs9NVH5RU5t2FKoSLtN4Var3PX1qnHVyWa1Kj01UX3iYnX7jCmyc30oAKAZgigAAPBbRlqy7pk5TbPnLVJMVKTKKqpUWl6pxsYmRUbYNWhgP8XFRisuNkq3z5iiYWnJgS4ZABCECKIAAKBdMtKSNf+BmcpZuVbLcnKVX+T0PJaalKCJWZnKGj2KnlAAQKsIogAAoN3s9nCdkpWpU7IyVVfnVq3LrQh7OLPjAgD80u1B9Pe//73XfYvFok8++WS/7bpSa+cEAACdZ7MRQAEA7dPtQTQnJ0cWyy9TuxuG4bndVruu1NY5AQAAAADmY/kWAAAAAICpTLlG1DCMLm0HAAAAAOi5uj2ILl++vEvbAQAAAAB6tm4PomPHju3SdgAAAACAno1rRAEAAAAApiKIAgAAAABMZcpkRftTVFSknJwcz/3DDz9cmZmZgSsIAAAAANBtgiKIvvvuu7r++us9919//fUAVgMAAAAA6E5BMTS3tLRUhmF4lm+ZMGFCgCsCAAAAAHSXoAiiNpvNczsmJkZRUVEBrAYAAAAA0J2CIogmJCR4bjc0NASwEgAAAABAdwuKIDpy5EjP7draWu3ZsyeA1QAAAAAAulNQBNERI0Zo8ODBnvsffvhhAKsBAAAAAHSnoAiiknTdddd5bv/rX/8KYCUAAAAAgO4UNEH0pptuUnp6ugzD0HfffaeZM2cGuiQAAAAAQDcImiBqs9n0zjvvaNCgQTIMQ4888oguvPBC7dixI9ClAQAAAAC6UFigC9irqKhI4eHheuWVV3TNNddow4YNeu211/TWW2/p9NNP17hx4zRixAj16dNH0dHR7T5+UlJSN1QNAAAAAGivoAmiycnJslgsnvsWi0WGYcjtduvNN9/Um2++2eFjWywWloUBAAAAgCARNEFUkgzD8Ny2WCyeYLrvdgAAAABAzxZUQXTfHlF/tvuDEAsAAAAAwSVogmhSUlKnAicAAAAAoGcImiBaWFgY6BIAAAAAACYImuVbAAAAAAAHB4IoAAAAAMBUAR+am5+fr6KiIu3evVsWi0V9+vRRUlKSUlNTA10aAAAAAKAbBCSIbt++Xffff78WL16s4uLiFtsMHjxY55xzjv7nf/5HCQkJJlcIAAAAAOgupg/NffbZZ3XooYfq8ccfl8PhkGEYLX45HA7NnTtXhx12mObPn292mQAAAACAbmJqEP3Xv/6lq6++WrW1tTIMQxaLpc0vwzBUW1ura665Rg8++KCZpQIAAAAAuolpQfTLL7/UHXfc4RVAJbXaIyrJK5DecccdWrlypVnlAgAAAAC6iWnXiM6cOVONjY1eATQ2NlYXXHCBxowZo4EDB6qpqUk7duzQV199pVdffVXl5eWeMNrQ0KCbb75ZX3zxhVklAwAAAAC6gcXY2/3Yjb799lsde+yxnt5NSZoyZYqeeOIJxcbGtrhPZWWlZsyYoYULF3r2s1gs+uabbzRq1KjuLvmgUFxcrMTEREmSw+HQ4MGDA1wRAAAAgEAwOxuYMjT3vffe89y2WCyaPHmyFi5c2GoIlaSYmBg9//zzOv/887VvVn7nnXe6tVYAAAAAQPcyJYjm5uZK+mU4rt1u1+OPP+73vnPnzlVERIRnSO/eYwEAAAAAeiZTgugPP/wg6Zfe0PHjx6t///5+79u/f3+ddNJJnkmM9h4LAAAAANAzmRJES0tLPT2axx57bLv3P+aYY7yOBQAAAADouUwJouXl5Z7bffv2bff+ffr08dyuqKjokpoAAD1TXZ1bZeVVqqtzB7oUAADQQaYs37Lvsi1hYe0/5b77NDY2dlldAICeweVyK2flWi1dnqsCh9OzPSUxQZPGZSpr9CjZ7eEBrBAAALSHaeuIAgDQERvyCjV73iKVVVSrrKJKpeWVamhsVFhoqErLq5Rf5NTCxR/rthlTlJGWHOhyAQCAH0wZmgsAQEdsyCvUrDnZcjh36btN27SlsFg1tS5JUk2tS1sKi7Vu0zY5nLs0a062NuQVBrZgAADgF4IoACAouVxuzZ63SCVlFdqc75DdZlXG0GQNT09RWspgDU9PUcbQZNlsVm3Od6ikrEKz5y2Sy8W1owAABDuCKAAgKOWsXKuyimrlFzkVExWhtJRERUXavdpERdqVlpKomKgIFRQ5VVZRrZyVawNTMAAA8Jvp14g+/PDDevnll9u1z88//+x1//e//3279rdYLPrkk0/atQ8AILCWLs9VWUWV3PX1Gpo8SCEhlhbbhYRYlJjQXxu2FKqsokrLcnJ1SlamydUCAID2MDWIGoahLVu2aMuWLZ06xooVK9rVfu+MvQCAnqGuzq0Ch1Ol5ZWKtNt8ekKbi4q0K9JuU2l5pfKLnKqrc8tmYxZdAACClalDczsTCC0Wi+cLAHBgq/31Os+GxkaFh1v92ifcalVjY5PX/gAAIDiZ1iNqGIZZpwIA9HARv64JGhYa6pkld3/c9fWKjLB77Q8AAIKTKUF06tSpZpwGAHCAsNnClZKYoNLyKu0uLVd1javN4bnVNS7VuOo0aGA/pSYlMCwXAIAgZ0oQzc7ONuM0AIADyKRxmcovcircapXDuVNpKYktTljU1GTI4dwpm9WquNhoTWSiIgAAgh7LtwAAglLW6FGKi41SalKCKqtrlVfgUHWN9zDd6hqX8gocqqyuVUpSguJio5Q1elRgCgYAAH4zffkWAAD8YbeH67YZUzRrTrbSUxOVX+TUhi2FirTbFG61yl1frxpXnWxWq9JTE9UnLla3z5giO9eHAgAQ9AiiAICglZGWrHtmTtPseYsUExWpsooqlZZXqrGxSZERdg0a2E9xsdGKi43S7TOmaFhacqBLBgAAfiCIAgCCWkZasuY/MFM5K9dqWU6u8oucnsdSkxI0MStTWaNH0RMKAEAPQhAFAAQ9uz1cp2Rl6pSsTNXVuVXrcivCHs7suAAA9FAEUQBAj2KzEUABAOjpmDUXAAAAAGAqgigAAAAAwFQEUQAAAACAqQiiAZKVlSWLxdKur5ycnECXDQAAAACdRhDtIUJCQjR06NBAlwEAAAAAncasuQGSnZ2t6urqNtts3LhRF1xwgSRp/PjxGjRokBmlAQAAAEC3IogGSEpKyn7bvPDCC57bl156aXeWAwAAAACmYWhukGpqatKLL74oSYqOjtY555wT4IoAAAAAoGsQRIPUJ598op9++kmSdN555ykyMjLAFQEAAABA1yCIBqnnn3/ec5thuQAAAAAOJFwjGoSqqqq0ePFiSdKQIUOUlZXVoeMUFxe3+bjT6ezQcQEAAACgMwiiQeiNN97wzKh7ySWXyGKxdOg4iYmJXVkWAAAAAHQJhuYGIYblAgAAADiQ0SMaZIqLi5WTkyNJGj16tNLS0jp8LIfD0ebjTqdTmZmZHT4+AAAAAHQEQTTILFy4UE1NTZKkqVOndupYgwcP7oqSAAAAAKBLMTQ3yLzwwguSJJvNpgsuuCDA1QAAAABA1yOIBpHVq1dr48aNkqTTTjtN8fHxAa4IAAAAALoeQTSI7DtJUWeH5QIAAABAsCKIBon6+nq9/PLLkqR+/fpp4sSJAa4IAAAAALoHQTRILFu2TLt27ZIkTZkyRWFhzCMFAAAA4MBEEA0SrB0KAAAA4GBBEA0CpaWlevfddyVJw4cP19FHHx3gigAAAACg+xBEg8Arr7yiuro6SfSGAgAAADjwEUSDwN61Q0NDQ3XxxRcHuBoAAAAA6F7MiBMEvvjii0CXAAAAAACmoUcUAAAAAGAqgigAAAAAwFQEUQAAAACAqQiiAAAAAABTEUQBAAAAAKYiiAIAAAAATEUQBQAAAACYiiAKAAAAADAVQRQAAAAAYCqCKAAAAADAVARRAAAAAICpCKIAAAAAAFMRRAEAAAAApiKIAgAAAABMRRAFAAAAAJiKIAoAAAAAMBVBFAAAAABgKoIoAAAAAMBUBFEAAAAAgKkIogAAAAAAUxFEAQAAAACmIogCAAAAAExFEAWA/airc6usvEp1de5AlwIAAHBACAt0AQAQjFwut3JWrtXS5bkqcDg921MSEzRpXKayRo+S3R4ewAoBAAB6LoIoADSzIa9Qs+ctUllFtcoqqlRaXqmGxkaFhYaqtLxK+UVOLVz8sW6bMUUZacmBLhcAAKDHYWguAOxjQ16hZs3JlsO5S99t2qYthcWqqXVJkmpqXdpSWKx1m7bJ4dylWXOytSGvMLAFAwAA9EAEUQD4lcvl1ux5i1RSVqHN+Q7ZbVZlDE3W8PQUpaUM1vD0FGUMTZbNZtXmfIdKyio0e94iuVxcOwoAANAeBFEA+FXOyrUqq6hWfpFTMVERSktJVFSk3atNVKRdaSmJiomKUEGRU2UV1cpZuTYwBQMAAPRQBFEA+NXS5bkqq6iSu75eiQn9FRJiabFdSIhFiQn9VVdfr7KKKi3LyTW5UgAAgJ6NIAoA+mWJlgKHU6XllYq023x6QpuLirQr0m5TaXml8oucLO0CAADQDgRRAJBU++t1ng2NjQoPt/q1T7jVqsbGJq/9AQAAsH8EUQCQFPHrmqBhoaFyu+v92sddX6/Q0BCv/QEAALB/BFEAkGSzhSslMUHxvWJU46pTdY2rzfbVNS7VuOoU3ytGqUkJstkIogAAAP4iiALAryaNy1RcbLTCrVY5nDvV1GS02K6pyZDDuVM2q1VxsdGamJVpcqUAAAA9G0EUAH6VNXqU4mKjlJqUoMrqWuUVOHx6RqtrXMorcKiyulYpSQmKi41S1uhRgSkYAACghwoLdAEAECzs9nDdNmOKZs3JVnpqovKLnNqwpVCRdpvCrVa56+tV46qTzWpVemqi+sTF6vYZU2Tn+lAAAIB2IYgCwD4y0pJ1z8xpmj1vkWKiIlVWUaXS8ko1NjYpMsKuQQP7KS42WnGxUbp9xhQNS0sOdMkAAAA9DkEUAJrJSEvW/AdmKmflWi3LyVV+kdPzWGpSgiZmZSpr9Ch6QgEAADqIIAoALbDbw3VKVqZOycpUXZ1btS63IuzhzI4LAADQBQiiALAfNhsBFAAAoCsxay4AAAAAwFQEUQAAAACAqQiiAAAAAABTEUQBAAAAAKYiiAIAAAAATEUQBQAAAACYiiAKAAAAADAVQRQAAAAAYCqCKAAAAADAVARRAAAAAICpCKIAAAAAAFMRRAEAAAAApiKIAgAAAABMRRAFAAAAgkBdnVtl5VWqq3MHuhSg24UFugAAAADgYOVyuZWzcq2WLs9VgcPp2Z6SmKBJ4zKVNXqU7PbwAFYIdA+CKAAAABAAG/IKNXveIpVVVKusokql5ZVqaGxUWGioSsurlF/k1MLFH+u2GVOUkZYc6HKBLsXQXAAAAMBkG/IKNWtOthzOXfpu0zZtKSxWTa1LklRT69KWwmKt27RNDucuzZqTrQ15hYEtGOhiBFEAAADARC6XW7PnLVJJWYU25ztkt1mVMTRZw9NTlJYyWMPTU5QxNFk2m1Wb8x0qKavQ7HmL5HJx7SgOHARRAAAAwEQ5K9eqrKJa+UVOxURFKC0lUVGRdq82UZF2paUkKiYqQgVFTpVVVCtn5drAFAx0A4IoAAAAYKKly3NVVlEld329EhP6KyTE0mK7kBCLEhP6q66+XmUVVVqWk2typUD3IYgCAAAAJqmrc6vA4VRpeaUi7TafntDmoiLtirTbVFpeqfwiJ0u74IBBEAUAAABMUvvrdZ4NjY0KD7f6tU+41arGxiav/YGejiAKAAAAmCTi1zVBw0JD5XbX+7WPu75eoaEhXvsDPR1BFAAAADCJzRaulMQExfeKUY2rTtU1rjbbV9e4VOOqU3yvGKUmJchmI4jiwEAQBQAAAEw0aVym4mKjFW61yuHcqaYmo8V2TU2GHM6dslmtiouN1sSsTJMrBboPQRQAAAAwUdboUYqLjVJqUoIqq2uVV+Dw6RmtrnEpr8ChyupapSQlKC42SlmjRwWmYKAbhAW6AAAAAOBgYreH67YZUzRrTrbSUxOVX+TUhi2FirTbFG61yl1frxpXnWxWq9JTE9UnLla3z5giO9eH4gBCEAUAAABMlpGWrHtmTtPseYsUExWpsooqlZZXqrGxSZERdg0a2E9xsdGKi43S7TOmaFhacqBLBroUQRQAAAAIgIy0ZM1/YKZyVq7Vspxc5Rc5PY+lJiVoYlamskaPoicUBySCKAAAABAgdnu4TsnK1ClZmaqrc6vW5VaEPZzZcXHAI4gCAAAAQcBmI4Di4MGsuQAAAAAAUxFEAQAAAACmIogCAAAAAExFEAUAAAAAmIogCgAAAAAwFUEUAAAAAGAqgigAAAAAwFQEUQAAAACAqQiiAAAAAABTEUQBAAAAAKYiiAIAAAAATEUQBQAAAACYiiAKAAAAADAVQRQAAAAAYCqCKAAAAADAVARRAAAAAICpCKIAAAAAAFMRRAEAAAAApiKIAgAAAABMRRAFAAAAAJiKIAoAAAAAMFVYoAvAfxUVFenZZ5/Ve++9px9//FGVlZXq16+fkpOTNW7cOJ1//vkaPnx4oMsEAAAAgE4hiAaJxx9/XLfddpuqq6u9thcXF6u4uFiff/65Kioq9OijjwamQAAAAADoIgTRIHDvvfdq1qxZkqS0tDRdddVVOu6449SrVy+VlJRozZo1Wrx4sUJCGEkNAAAAoOezGIZhBLqIg9knn3yik046SZJ06aWXav78+bJarS22dbvdCg8P77JzFxcXKzExUZLkcDg0ePDgLjs2AAAAgJ7D7GxAj2gANTU1afr06ZKkI488Us8++6zCwlr/lXRlCAUAAACAQGGsZwB9+OGH2rJliyTp1ltvbTOEAgAAAMCBgiAaQK+99pokyWKx6LTTTvNs37Nnj7Zs2aI9e/YEqjQAAAAA6DYE0QBauXKlJCk5OVkxMTFatGiRRowYoT59+igtLU19+vRRenq65syZo7q6ugBXCwAAAABdg8mKAqSpqUlWq1VNTU067rjjdPzxx2vu3Lmtth8zZozee+89xcXF+X2O4uLiNh93Op3KzMyUxGRFAAAAwMGMyYoOEuXl5WpqapIkrV+/Xl9//bUSEhL04IMPatKkSbLb7fr666916623auXKlfryyy91+eWX68033/T7HHv/IwEAAABAMGFoboBUV1d7brtcLkVGRmr58uW6+OKLFR8fr4iICP3ud7/T//3f/+nII4+UJC1evFirVq0KVMkAAAAA0CXoEQ0Qu93udf/KK69Uenq6T7uIiAjdd999nsmMXnnlFf3mN7/x6xwOh6PNx/cdmgsAAAAAZiGIBkhMTIzX/QkTJrTadvz48QoLC1NDQ4O+/vprv8/BNZ8AAAAAghFDcwPEZrOpX79+nvttXc9pt9vVt29fSdKuXbu6vTYAAAAA6E4E0QDKyMjw3G5sbGyz7d7Hw8LoxAYAAADQsxFEA+h3v/ud53Z+fn6r7SoqKrR7925J0qBBg7q9LgAAAADoTgTRADr33HM9txcvXtxqu8WLF2vvcq8nnnhit9cFAAAAAN2JIBpAI0eO1MSJEyVJL730kj755BOfNtu3b9ff/vY3SVJ4eLimTZtmao0AAAA9WV2dW2XlVaqrcwe6FAD74ILDAHv00Uf11VdfqaysTKeddppuvPFGTZo0SREREcrNzdXs2bNVXFwsSbrnnnsYmgsAALAfLpdbOSvXaunyXBU4nJ7tKYkJmjQuU1mjR8luDw9ghQAsxt4xnwiYzz//XOedd5527NjR4uMWi0V33HGH7rnnni49b3FxsWe2XofDwXIvAACgx9uQV6jZ8xaprKJaZRVVKi2vVENjo8JCQxXfK0ZxsdGKi43SbTOmKCMtOdDlAkHD7GxAj2gQOOGEE7RhwwY9/vjjeuutt1RQUCC3262EhARlZWXp+uuv11FHHRXoMgEAAILahrxCzZqTrZKyCuUXOeWur1ek3abwcKtqal3aXVoum9WqlKQEzZqTrXtmTiOMAgFCj+hBjB5RAABwoHC53Lry1jlyOHdpc75DMVERSkzor6hIu6dNdY1LDudOVVbXKj01UYkJ/TT/gZkM0wVkfjZgsiIAAAD0eDkr16qsolr5RU7FREUoLSXRK4RKUlSkXWkpiYqJilBBkVNlFdXKWbk2MAUDBzmCKAAAAHq8pctzVVZRJXd9vRIT+iskxNJiu5AQixIT+quuvl5lFVValpNrcqUAJIIoAAAAeri6OrcKHE6Vllcq0m7z6QltLirSrki7TaXllcovcrK0C9rEEkDdg8mKAAAA0KPVun4JCA2NjQoPt/q1T7jVqsbGJs/+NhvXieK/WAKo+xFEAQAA0KNF/BoIwkJDVVPr8msfd329IiPsXvsDUttLAJWWVym/yKmFiz9mCaBOYmguAAAAejSbLVwpiQmK7xWjGledqmvaDqPVNS7VuOoU3ytGqUkJ9IbCY+8SQA7nLn23aZu2FBZ7PtyoqXVpS2Gx1m3aJodzl2bNydaGvMLAFtyDEUQBAADQ400al6m42GiFW61yOHeqqanlFQqbmgw5nDtls1oVFxutiVmZJleKYOVyuTV73iKVlFVoc75DdptVGUOTNTw9RWkpgzU8PUUZQ5Nls1m1Od+hkrIKzZ63SC4X1452BEEUAAAAPV7W6FGKi41SalKCKqtrlVfg8OkZra5xKa/AocrqWqUkJSguNkpZo0cFpmAEHZYAMhdBFAAAAD2e3R6u22ZMUZ+4WKWnJspVV68NWwr1/eYC5eUX6/vNBdqwpVB1dfVKT01Un7hY3T5jChPOwIMlgMzFZEUAAAA4IGSkJeuemdM0e94ixURFeiaaaWxsUmSEXYMG9lNcbLTiYqN0+4wpGsZEM/hVVywBxLXG7UMQBQAAwAEjIy1Z8x+YqZyVa7UsJ1f5Rf9deiM1KUETs1h6A75YAsh8BFEAAAAcEOrq3Kp1uRVhD9cpWZk6JSvTaxtBAa1hCSDzEUQBAADQY7lcbuWsXKuly3NV4Phv72dKYoImjful9zOuV3QAK0RPsHcJoNLyKu0uLVd1javN4bl7lwAaNLAfSwB1EEEUAAAAPdKGvELNnrdIZRXVnutBGxobFRYaqtLyKuUXObVw8ce6bcYUZXA9KPZj0rhM5Rc5PUsApaUktjhhEUsAdQ1mzQUAAECPsyGvULPmZMvh3KXvNm3TlsJiz5DKmlqXthQWa92mbXI4d2nWnGxtyCsMbMEIeiwBZC6CKAAAAHoUl8ut2fMWqaSsQpvzHbLbrMoYmqzh6SlKSxms4ekpyhiaLJvNqs35DpWUVWj2vEVy/TohDdASlgAyF0EUAAAAPUrOyrUqq6hWfpFTMVERSktJ9LmeLyrSrrSURMVERaigyKmyimrlrFwbmILRY+xdAigxoZ+OPOJQDU0erMgIuywWiyIj7BqaPFgjjzhUiQn9dO/MaSwB1AlcIwoAAIAeZenyXJVVVMldX6+hyYNavI5PkkJCLEpM6K8NWwpVVlGlZTm5OoXr+bAfLAFkDoIoAAAAeoy6OrcKHE6Vllcq0m5rc2ZT6Zee0Ui7TaXllcovcqqujvUesX92lgDqdgRRAAAA9Bi1v17n2dDYqPBwq1/7hFutamxs8uxPmEB72GwE0O7ANaIAAADoMSJ+HQ4ZFhoqt7ver33c9fUKDQ3x2h9AYBFEAQAA0GPYbOFKSUxQfK8Y1bjqfJbXaK66xqUaV53ie8UoNSmBni0gSBBEAQAA0KNMGpepuNhohVutcjh3qqnJaLFdU5Mhh3OnbFar4mKjNZGJioCgQRAFAABAj5I1epTiYqOUmpSgyupa5RU4fHpGq2tcyitwqLK6VilJCYqLjVLW6FGBKRiADyYrAgAAQI9it4frthlTNGtOttJTE5Vf5NSGLYWKtNsUbrXKXV+vGledbFar0lMT1ScuVrfPmMJyG0AQIYgCAACgx8lIS9Y9M6dp9rxFiomKVFlFlUrLK9XY2KTICLsGDeynuNhoxcVG6fYZUzQsLTnQJQPYB0EUAAAAPVJGWrLmPzBTOSvXallOrvKLnJ7HUpMSNDErU1mjR9ETCgQhgigAAAB6LLs9XKdkZeqUrEzV1blV63Irws66j0CwI4gCAADggGCzEUCBnoJZcwEAAAAApiKIAgAAAABMRRAFAAAAAJiKIAoAAAAAMBVBFAAAAABgKoIoAAAAAMBUBFEAAAAAgKkIogAAAAAAUxFEAQAAAACmIogCAAAAAExFEAUAAAAAmIogCgAAAAAwFUEUAAAAAGAqgigAAAAAwFQEUQAAAACAqQiiAAAAAABTEUQBAAAAAKYiiAIAAAAATEUQBQAAAACYiiAKAAAAADAVQRQAAAAAYCqCKAAAAADAVARRAAAAAICpCKIAAAAAAFMRRAEAAAAApiKIAgAAAABMRRAFAAAAAJiKIAoAAAAAMBVBFAAAAABgKoIoAAAAAMBUBFEAAAAAgKkIogAAAAAAUxFEAQAAAACmIogCAAAAAExFEAUAAAAAmIogCgAAAAAwFUEUAAAAAGAqgigAAAAAwFQEUQAAAACAqQiiAAAAAABTEUQBAAAAAKYiiAIAAAAATEUQBQAAAACYiiAKAAAAADAVQRQAAAAAYCqCKAAAAADAVARRAAAAAICpCKIAAAAAAFMRRAEAAAAApiKIAgAAAABMRRAFAAAAAJiKIAoAAAAAMBVBFAAAAABgKoIoAAAAAMBUBFEAAAAAgKkIogAAAAAAUxFEAQAAAACmIogCAAAAAExFEAUAAAAAmIogCgAAAAAwFUEUAAAAAGAqgigAAAAAwFQEUQAAAACAqQiiAAAAAABTEUQDyGKx+PWVlZUV6FIBAAAAoMsQRAEAAAAApgoLdAGQpk+fruuuu67Vx6OiokysBgAAAAC6F0E0CPTv31/Dhw8PdBkAAAAAYAqG5gIAAAAATEUQBQAAAACYiiAKAAAAQHV1bpWVV6muzh3oUnAQ4BrRIPDaa6/p1VdfVWFhoUJDQzVw4ECNGTNGl112mcaNGxfo8gAAAHCAcrncylm5VkuX56rA4fRsT0lM0KRxmcoaPUp2e3gAK8SBymIYhhHoIg5WFotlv23OOussLViwQL169Wr38YuLi9t83Ol0KjMzU5LkcDg0ePDgdp8DAAAAPdOGvELNnrdIZRXVKquoUml5pRoaGxUWGqr4XjGKi41WXGyUbpsxRRlpyYEuF92suLhYiYmJkszJBgTRAIqKitIZZ5yh8ePH6/DDD1d0dLR27dqlFStW6H//939VUlIiSRo7dqw++ugjWa3Wdh3fn6C7F0EUAADg4LEhr1Cz5mSrpKxC+UVOuevrFWm3KTzcKre7XjWuOtmsVqUkJahPXKzumTmNMHqAI4geRMrKyhQXF9fiYzt27NDEiRO1Zs0aSdJjjz2mG264oV3HJ4gCAACgOZfLrStvnSOHc5c25zsUExWhxIT+ioq0e9pU17jkcO5UZXWt0lMTlZjQT/MfmMkw3QOY2UGUyYoCqLUQKkkDBgzQ6//f3p2HR1Glexz/Ze8sJGELBEiAAGFxGVTgwoADOAqCqIDLCOogg8Ao4/W6XMcVcIMBt7l6URAB9aoBHEQBAVEmIEIgMMpcBdkDCRI1CCGQkHSWc/9gUjed7k46oekkne/nefp5UlWn3nO6+qS63q5TVX/7m3UW9LXXXqtx/KysrCpf6enptW06AAAAGqgNW3cqNy9fhzKz1SQyXMkdExySUEmKjLApuWOCmkSGKyMzW7l5+dqwdWfdNBh+iZsV1WNJSUm65pprtHr1ah04cEDHjh1TmzZtPF6fM5wAAACobHVqunLzzsheXKwuHdoqMND1KLrAwAAlxMdp1/7Dys07ozUb0nXtoD4+bi38FWdE67kePXpYf//www912BIAAAA0dEVFdmVkZevkqdOKsIU5nQmtLDLCpghbmE6eOq1Dmdk82gVeQyJaz9XkOk8AAACgKmcLzyWSJaWlCg317EaYoSEhKi0tc1gfOF8kovXc7t27rb9rMiwXAAAAqCz8XzcbCg4Kkt1e7NE69uJiBQUFOqwPnC8S0XosIyNDn3/+uSSpU6dOatu2bR23CAAAAA1ZWFioOibEq2lMExUUFim/oLDK8vkFhSooLFLTmCZKSoxXWBiJKLyDRLSOrFy5UiUlJW6X//TTT7rppptkt58b/nDvvff6qmkAAADwY8MH91FsdJRCQ0KUlf2zyspcP82xrMwoK/tnhYWEKDY6SsO4URG8iLvm1pH77rtPxcXFuummm9SvXz916NBB4eHhOn78uDZs2KB58+bp+PHjkqQBAwZoypQpddxiAAAA+INBfXvqveVfKCkxXnsPZWlfRla1zxGNjY7UoL49667R8DsBxhjXP4HggurQoYOOHDlSbbmbbrpJb731VpXPHK0tXz+0FgAAAPXDrn2H9dSLi/RLbp4OZWbLXlysCFuYQkNCZC8uVkFhkcJCQtQxMV7NY6P13MPj1SO5Q103GxeQr3MDzojWkXfeeUcbN25UWlqaDh06pOPHjysvL09RUVFKSEjQr3/9a40bN079+vWr66YCAADAz1yU3EHPPjxeM+d8oCaREcrNO6OTp06rtLRMEeE2tW3dUrHRUYqNjtTjU8aShMLrOCPaiHFGFAAAoHErLLRrw9adWrMhXYcys635SYnxGjaojwb17Skbd8ptFDgjCgAAAMAnbLZQXTuoj64d1EdFRXadLbQr3BbK3XFxwZGIAgAAAFBYGAkofIfHtwAAAAAAfIpEFAAAAADgUySiAAAAAACfIhEFAAAAAPgUiSgAAAAAwKdIRAEAAAAAPkUiCgAAAADwKRJRAAAAAIBPkYgCAAAAAHyKRBQAAAAA4FMkogAAAAAAnyIRBQAAAOA3iorsyj11RkVF9rpuCqoQXNcNAAAAAIDzUVho14atO7U6NV0ZWdnW/I4J8Ro+uI8G9e0pmy20DluIykhEAQAAADRYu/Yd1sw5Hyg3L1+5eWd08tRplZSWKjgoSCdPndGhzGy9t/wLPTZlrC5K7lDXzcW/MDQXAAAAQIO0a99hPfXiImVl5+if3x/U/sNHVXC2UJJUcLZQ+w8f1f9+f1BZ2Tl66sVF2rXvcN02GBYSUQAAAAANTmGhXTPnfKBfcvO091CWbGEhuqhLB13ctaOSO7bTxV076qIuHRQWFqK9h7L0S26eZs75QIWFXDtaH5CIAgAAAGhwNmzdqdy8fB3KzFaTyHAld0xQZITNoUxkhE3JHRPUJDJcGZnZys3L14atO+umwXBAIgoAAACgwVmdmq7cvDOyFxcrIT5OgYEBLssFBgYoIT5ORcXFys07ozUb0n3cUrhCIgoAAACgQSkqsisjK1snT51WhC3M6UxoZZERNkXYwnTy1Gkdyszm0S71AIkoAAAAgAbl7L+u8ywpLVVoaIhH64SGhKi0tMxhfdQdElEAAAAADUr4v54JGhwUJLu92KN17MXFCgoKdFgfdYdEFAAAAECDEhYWqo4J8Woa00QFhUXKLyissnx+QaEKCovUNKaJkhLjFRZGIlrXSEQBAAAANDjDB/dRbHSUQkNClJX9s8rKjMtyZWVGWdk/KywkRLHRURo2qI+PW1q1oiK7ck+daXTXrQbXdQMAAAAAXHhFRXadLbQr3BbqF2cEB/XtqfeWf6GkxHjtPZSlfRlZSoiPc7hxUX5BobKyf9bp/LPqmpSg2OhIDerbs+4a/S+FhXZt2LpTq1PTlZGVbc3vmBCv4YP7aFDfnrL5+fBhElEAAADAT/lzwmOzheqxKWP11IuL1DUpQYcys7Vr/2FF2MIUGhIie3GxCgqLFBYSoq5JCWoeG63Hp4yt8/e7a99hzZzzgXLz8pWbd0YnT51WSWmpgoOCdPLUGR3KzNZ7y7/QY1PG6qLkDnXa1gspwBjj+hw2/N7Ro0eVkJAgScrKylK7du3quEUAAADwlqoSnqYxTRQbHaXY6MgGn/C4ep+lpWUKCgp0eJ+PTxmrHnX8PnftO6ynXlykX3LzdCgzW/bi4nOJc2iI7Pb/T5w7JsareWy0nn14vM8+G1/nBiSijRiJKAAAgH+qzwnPhVB+5nfNhnQdyvz/M79JifEaNqh+nPktLLTr7j+/qKzsHO09lKUmkeHVDiVOiG+pt2Y97JO2+zo3YGguAAAA4EcKC+2aOecD/ZKbZyU8XTq0dZnw7D2Upa5JCZo55wOfJTwXgs0WqmsH9dG1g/rU22thN2zdqdy8fB3KzFaTyHAld0xQYGCAQ5nICJuSOyZoX0aWMjKz1SQyQhu27tS19ewGS97AXXMBAAAAP+Iq4amYhEr/n/A0iQxXRma2cvPytWHrzrppsJeFhYUqNiaqXiWhkrQ6NV25eWdkLy5WQnycUxJaLjAwQAnxcSoqLlZu3hmt2ZDu45b6BokoAAAA4EdIeOqfoiK7MrKydfLUaUXYwpx+GKgsMsKmCFuYTp46rUOZ2X75aBcSUQAAAMBPkPDUT2cLz23XktJShYaGeLROaEiISkvLHNb3JySiAAAAgJ8g4amfwv917W1wUJDs9mKP1rEXFysoKNBhfX9CIgoAAAD4CRKe+iksLFQdE+LVNKaJCgqLlF9QWGX5/IJCFRQWqWlMEyUlxte76129gUQUAAAA8BMkPPXX8MF9FBsdpdCQEGVl/6yyMtdP0SwrM8rK/llhISGKjY7SMD+8Y65EIgoAAAD4FRKe+mlQ356KjY5UUmK8Tuef1b6MLKcfCvILCrUvI0un88+qY2K8YqMjNahvz7pp8AVGIgoAAAD4ERKe+slmC9VjU8aqeWy0uiYlqLCoWLv2H9Z3ezO079BRfbc3Q7v2H1ZRUbG6JiWoeWy0Hp8ytsE+27U6wXXdAAAAAADeU57wPPXiInVNStChzGzt2n9YEbYwhYaEyF5crILCIoWFhDSKhKc+uSi5g559eLxmzvlATSIjlJt3RidPnVZpaZkiwm1q27qlYqOjFBsdqcenjFWP5A513eQLJsAY4/pcPfze0aNHlZCQIEnKyspSu3bt6rhFAAAA8JZd+w5r5pwPlJuX75DwBAUFqmlMk0aT8NRHhYV2bdi6U2s2pOtQZrY1PykxXsMG9dGgvj19/sOAr3MDEtFGjEQUAADAv9XHhAeOiorsOltoV7gttE5vFuXr3IChuQAAAICfstlCde2gPrp2UJ96k/DAUVhY4/w8SEQBAACARqCxJjyon7hrLgAAAADAp0hEAQAAAAA+RSIKAAAAAPApElEAAAAAgE+RiAIAAAAAfIpEFAAAAADgUySiAAAAAACfIhEFAAAAAPgUiSgAAAAAwKdIRAEAAAAAPkUiCgAAAADwKRJRAAAAAIBPkYgCAAAAAHyKRBQAAAAA4FMkogAAAAAAnyIRBQAAAAD4FIkoAAAAAMCnSEQBAAAAAD5FIgoAAAAA8CkSUQAAAACAT5GIAgAAAAB8ikQUAAAAAOBTJKIAAAAAAJ8KrusGoO6UlJRYf2dnZ9dhSwAAAADUpYr5QMU84UIhEW3EcnJyrL/79OlThy0BAAAAUF/k5OSoQ4cOF7QOhuYCAAAAAHwqwBhj6roRqBuFhYX69ttvJUktW7ZUcLD3TpBnZ2dbZ1nT09MVHx/vtdjwb/Qd1BZ9B7VBv0Ft0XdQW/W175SUlFgjJi+55BLZbLYLWh9Dcxsxm82m3r17X/B64uPj1a5duwteD/wPfQe1Rd9BbdBvUFv0HdRWfes7F3o4bkUMzQUAAAAA+BSJKAAAAADAp0hEAQAAAAA+RSIKAAAAAPApElEAAAAAgE+RiAIAAAAAfIpEFAAAAADgUwHGGFPXjQAAAAAANB6cEQUAAAAA+BSJKAAAAADAp0hEAQAAAAA+RSIKAAAAAPApElEAAAAAgE+RiAIAAAAAfIpEFAAAAADgUySiAAAAAACfIhEFAAAAAPgUiSgAAAAAwKdIRBuwn3/+WatWrdLUqVM1bNgwtWjRQgEBAQoICNBdd93lUYy3337bWqe619tvv11tvIKCAs2ePVu9e/dWs2bNFBkZqW7duumhhx7SkSNHPH5vR44c0UMPPaRu3bopMjJSzZo1U+/evfXCCy+ooKDA4zhbtmzRHXfcofbt28tms6l169YaOnSoUlJSPI7hb3bs2KFnnnlGQ4YMUbt27RQWFqaoqCglJydr/Pjx+uqrr2oUb82aNRo1apQVq127dho1apTWrFnjcYySkhLNnTtXV155pVq2bKnw8HB16tRJkydP1q5duzyOc/z4cU2dOlWXXnqpoqOjFR0drUsvvVRTp07VL7/84nGc7777TpMnT1anTp0UHh6uli1b6sorr9TcuXNVUlLicRx/442+wz6n8cnLy9PixYv10EMPaeDAgercubNiYmIUGhqquLg4DRo0SLNnz/b4f9Rb2zglJUVDhgxR69atZbPZ1L59e91xxx1KS0vzOEZ963/+xht9Z8OGDR7vc6ZPn15tm/i+avj+/Oc/O3zuGzZsqHYdjnUuEIMGS5Lb17hx4zyKsWjRoirjVHwtWrSoylj79+83Xbp0cbt+dHS0WblyZbVtWrFihYmOjnYbJzk52ezfv7/aONOmTTOBgYFu41x33XXm7NmzHm0nf3HllVd69Fn//ve/N0VFRVXGKi0tNRMmTKgyzt13321KS0urjJOTk2N69+7tNkZYWJiZP39+te9t69atpnXr1m7jxMfHm23btlUb58033zShoaFu4/Tp08fk5ORUG8ffeKvvsM9pXPscY4z5/PPPPfq8W7RoYdauXVtlLG9s44KCAjN8+HC3MQIDA8306dOrfV/1rf/5I2/0ndTUVI/3OdOmTauyPXxfNXzffPONCQ4OdthOqampbstzrHNhkYg2YBU7TGJiohkyZIg1XZtE9LPPPjPffvut29fJkyfdxsnLyzPJyclWrIkTJ5r169ebLVu2mOeff95ERUUZSSYiIsJ88803buN8/fXXJjw83EgyUVFR5vnnnzdbtmwx69evNxMnTnT4Ys7Ly3MbZ+7cuVbZTp06mQULFpj09HTz8ccfm8GDB1vLxowZ49F28hedOnUykkybNm3M/fffb/72t7+Z9PR0k5aWZl5++WXTtm1bj7fNo48+apW97LLLTEpKiklPTzcpKSnmsssus5Y99thjbmOUlJSYAQMGWGVHjx5t1qxZY7Zt22ZeffVVExcXZx0Yrl692m2czMxM07JlSyPJBAcHm0ceecR8+eWX5ssvvzSPPPKI9aUTFxdnsrKy3Mb59NNPrYPcVq1amVdffdVs27bNrFmzxowePdpq54ABA0xJSUn1G9yPeKvvsM9pXPscY84lEwkJCeb3v/+9+a//+i/z0UcfmbS0NLN582azZMkSc8stt5igoCAjyYSGhpqdO3e6jOOtbXzbbbdZZQcPHmw+/vhjk56ebhYsWGD1c0lm3rx5bmPUt/7nr7zRdyomogsXLqxyn/PTTz+5bQvfVw1faWmplQyWf17VJaIc61zYvkMi2oBNnTrVrFy50vz444/GGGMyMjLOKxHNyMiodVueeuopK87s2bOdlm/evNn6Bxk4cKDbOOVnXYKDg82WLVucls+ePduqx90vl7/88ouJiYmxEvTKv+iUlJSY66+/3qMdkL+57rrrzJIlS9zuWHJychwOrjZu3Oiy3N69e63Ps1evXqagoMBheX5+vunVq5f1Wbr7NX/BggVWXffee6/T8v3791tnCjp37myKi4tdxrnzzjutOEuXLnVavmTJkmr/N+x2u0lKSjLSuTMZBw4ccCpz7733WnGqO1vnb7zVd9jnNK59jjHGowOZ5cuXW9tn1KhRTsu9tY3Xr19vlbn++uud2paTk2MSExONJBMbG2tOnDjhMk596n/+zBt9p2Iiej7/e3xfNXyvvPKKkWS6detmHnvssWr7Bcc6F77vkIj6kbpKRO12u3WA0L17d7fDEyZPnmzVlZ6e7rR827Zt1vLJkye7jFFaWmq6d+9uHSTY7XanMrNmzbLipKSkuIyTlZVl/Yo6fPjwGrxb/7dy5Upr+913330uy9xzzz1WmbS0NJdl0tLSqtzxGmOsz7JZs2YmPz/fZZmZM2dWuePNzs62ftkbOnSo2/c1dOhQ6xfH7Oxsp+UVd+AzZ850GSM/P980bdrUSDI9evRwW1dj5UnfYZ/DPsedrl27GuncMMvKvLWNhw0bZh00ujtjkJKSUmWSWd/6H6ruO95KRPm+atiOHDlijVTYsGGDmTZtWrX9gmOdC993uFkRzltqaqpOnTolSRo3bpwCA113q4o3UFq+fLnT8o8//tj6e/z48S5jBAYG6ve//70kKTc3V6mpqW7jREdHa/To0S7jtGvXTldffbUkaf369Tp9+rTLco3R4MGDrb8PHjzotNwYo08++USS1K1bN/Xt29dlnL59+6pr166SpE8++UTGGIfl+/bt0/fffy9JuvXWWxUREeEyTnX9ZsWKFSorK5Pkvt9UjFNWVqYVK1Y4La/Y/9zd7CsiIkK33nqrJGn37t3at2+f2/oao+r6jrewz/FPTZo0kSQVFhY6LfPGNj59+rTWr18vSbr66qvVrl07l3FGjx6t6OhoSa77TX3rf6i673gD31cN35QpU3TmzBmNGzdOAwcOrLY8xzq+6TskojhvFe+UWdU/d69evax/wM2bN7uNExkZqSuuuMJtnIp1VI5jt9uVnp4uSerXr59CQ0OrjVNUVKQdO3a4LdfYFBUVWX8HBQU5Lc/IyNCxY8ckVf15V1z+ww8/6PDhww7LPO03rVu3VnJysqSq+011carqNxXjdO3aVa1bt651nMasur7jLexz/M/evXu1c+dOSecO+iry1jbevn277Ha7QzlXQkNDrYPO7du3q7i42GF5fep/qLrveAvfVw3b0qVLtWrVKjVr1kwvvviiR+twrOObvkMiCsv48ePVpk0bhYaGqkWLFurbt6+efPJJ/fDDD1Wut3v3buvvqr4EgoOD1blzZ0myfh2qqHxe586dFRwc7DZOxToqx9m3b59KS0urbUt1cRqzjRs3Wn93797dabmnn3fl5ZW3cW3iZGVlKT8/32WcmJiYKneq8fHx1lmOym05c+aMsrKyatQWV3Eau+r6TmXscxq3goIC7d+/Xy+//LIGDhxoPS7gP/7jPxzKeWsb12afU1JSov3799cqji/6X2Plad+p7IknnlD79u0VFhampk2b6rLLLtMDDzxQ7Rkfvq8artzcXN1///2SpFmzZqlFixYercexjm/6DokoLBs2bFB2draKi4v1yy+/aNu2bXr++efVuXNnzZs3z+16R48elXTuV93Y2Ngq60hISJAk5eTkOJw9KSws1PHjxyXJ7XCpck2bNlVkZKQkWf9QldviSZzytriK01iVlZXpL3/5izVdPjSjIm9t49rEMcY4rFcxTnUxKsah33ifJ32nMvY5jU/F58hGRkYqOTlZDz30kH766SdJ0qOPPqqxY8c6rFOX+5yq4tSH/teY1KbvVLZlyxZlZmbKbrcrNzdXO3fu1F//+ld1795d06dPdxpWWY7vq4brkUce0Y8//qj+/ftrwoQJHq/HsY5v+o77n+DQaCQlJWn06NHq16+f1fEOHTqkZcuW6W9/+5sKCwv1xz/+UQEBAZo0aZLT+uXX4URFRVVbV/mXqXTul5mwsDCHGDWJk5+frzNnzrhsiydxKrcF0iuvvGINgRs9erTL4WLe2sbejlOT/ke/8T5P+k459jn0ncp69uypN998U71793Za5g/7nPI43u5/qLrvlIuPj9fo0aM1YMAAJSUlKTg4WJmZmVq1apXeffddFRcX6+mnn5bdbteMGTOc1uf7qmHatGmT3nrrLQUHB2vu3LkKCAjweF1/2O80hL5DItrIjRo1SuPGjXP65+zdu7d+97vfadWqVRo9erSKi4v1wAMP6IYbbnAaElB+c4CqrtspV/4lLElnz551ilHTOBVj1DSOu7Y0Vhs3btSjjz4qSYqLi9Mbb7zhspy3trG349Bv6o6nfUdin+OqLY3JyJEj1atXL0nntsHBgwe1dOlSLV++XGPGjNFf//pXjRgxwmEdf9jnVI7jrf7XmNSm70jn9i1HjhxRSEiIw/zLL79cI0eO1KRJkzRkyBCdOnVKf/nLX/S73/1Ov/rVrxzK8n3V8Njtdk2aNEnGGD3wwAO6+OKLa7S+P+x3GkLfYWhuIxcTE1PlL0QjRozQ1KlTJZ27JmPBggVOZWw2myRZN4GoSsWhSeHh4U4xahqnYoyaxnHXlsZo165dGjVqlEpKSmSz2fThhx8qLi7OZVlvbWNvx6Hf1I2a9B2JfY6rtjQmsbGxuvjii3XxxRerd+/euu222/TRRx/p3Xff1aFDh3TjjTfq7bffdljHH/Y5leN4q/81JrXpO9K5MzuVk9CK+vTpo//+7/+WdG5IZPnfFfF91fDMmDFDe/bsUWJioqZNm1bj9f1hv9MQ+g6JKKo1adIk68Cx4s1IypXfNt2TU/cVL76uOCygPEZN41QeWlCTOO7a0thkZGRoyJAhOnnypIKCgrR48WL95je/cVveW9vY23HoN75X077jKfY5jc+dd96pW265RWVlZfrTn/6kEydOWMv8YZ9TOY63+h+q7jueuu2226wbvFS1z5H4vmoI9uzZo5kzZ0qSXnvtNYdhpp7yh/1OQ+g7JKKoVlxcnJo3by5JLu9mWX7Bc35+vnJzc6uMVX7Bc8uWLR1O+9tsNquOyhdoV3by5EnrH6TixdQV2+JJnIoXX1eO01gcO3ZMV199tY4dO6aAgAAtXLhQN954Y5XreGsb1yZOQECA0wX25dPVxagYp3Jb2rZtW+O2uIrTmNSm73iKfU7jVN5/8vPztXbtWmt+Xe5zqopTH/ofznHXdzwVHBxsPTqjqn2OxPdVQ/DKK6/IbrcrKSlJBQUFWrx4sdPru+++s8r//e9/t+aX/69xrOObvkMiCo9UNZSuR48e1t979uxxW66kpMR6yL2rRzuUxzlw4IB1K3ZXKtZROU5ycrL1/MKq2lJdnMbg+PHjuuaaa3To0CFJ5341LH9welU8/bwrL6+8jWsTJyEhwemXzfI4p06d0o8//ug2RnZ2tvLy8ly2pUmTJtaOln5Tvdr2nZpgn9P4tGzZ0vr7yJEj1t/e2sa12ecEBwerS5cutYrji/6Hc9z1nZrwxj6n4nK+r+pO+bDSQ4cOacyYMS5fy5Yts8o/++yz1vycnBxJHOv4qu+QiKJaOTk51m3m27Rp47R8wIAB1t+uhrSU27Fjh/VLU//+/d3Gyc/P1z/+8Q+3cSrWUTlOaGio+vTpI0lKS0urcgx8eZywsDDrBgiNxalTpzR06FDruVR/+ctfNGXKFI/W7dixo9UPqvq8JenLL7+UdO5XuA4dOjgs87Tf/Pjjj9Yz3qrqN9XFqarfVIyzd+/eKnfy1cXxd+fTdzzFPqdxqngmquJQMG9t4969e1s36Kiq39jtdm3dutVap/L1hfWp/+Ecd33HUyUlJdb3zPnsc/i+8h8c6/io7xj4jYyMDCPJSDLjxo3zWtznnnvOivvss886LS8qKjIxMTFGkunevbspKytzGWfy5MlWnPT0dKfl27Zts5ZPnjzZZYzS0lLTvXt3I8nExsYau93uVGbWrFlWnJSUFJdxsrKyTFBQkJFkhg8fXtXb9zv5+fmmf//+1jZ64oknahzjnnvusdZPS0tzWSYtLc0qc++997osU/5ZNmvWzOTn57ssM3PmTCvO0qVLnZZnZ2ebwMBAI8kMHTrUbZuHDh1qJJnAwECTnZ3ttHzJkiVWPTNnznQZIz8/3zRt2tRIMj169HBbl7/yRt/xBPucxmn48OHWdkxNTXVY5q1tPGzYMCPJBAcHm6ysLJdlUlJSrLpmz57ttLy+9T9U3Xc88d5771nrT5gwwWUZvq/8y7Rp06rtMxzrXPi+QyLqR2qaiGZkZJivv/66yjIrV640oaGhRpIJDw83R48edVnuqaeeqvKLe8uWLSY4ONhIMgMHDnRb35VXXmkdJGzZssVp+ezZs616pk2b5jLGL7/8Yh0ktG/f3hw/ftxheUlJibn++uvP60uroSoqKjJDhgyx3vv9999fqzh79+61Dvh69eplCgoKHJYXFBSYXr16WZ/lvn37XMZZsGCB1ZYpU6Y4LT9w4ICJjo42kkznzp1NcXGxyzh33nmnFefDDz90Wr506dJq/zfsdrtJSkoykkx0dLQ5cOCAU5l7773XirNo0SKXcfyVN/oO+5zGt88xxphFixaZs2fPVlnm5ZdftrZPx44dTUlJicNyb23j9evXW2VuuOEGp3pycnJMYmKilfidOHHCZZz61P/82fn2nRMnTlT7/7Zt2zYTGxtrJJmAgACzY8cOl+X4vvIvniSiHOtc+L5DItqAbdq0ySxatMh6vfDCC1bH6d+/v8MyVx0pNTXVSDL9+vUzM2bMMJ9++qnZvn272b59u1myZIm55ZZbTEBAgBVzzpw5btuSl5dnkpOTrbKTJk0yf//7301aWpqZMWOGiYqKsg4sv/nmG7dxvv76axMeHm4kmaioKDNjxgyTlpZm/v73v5tJkyZZ8ZOTk01eXp7bOHPnzrXKdurUySxcuNBs377dfPLJJ2bw4MHWsjFjxtRkkzd4o0ePtt77VVddZf73f//XfPvtt25fe/fudRvr0UcftWJddtllZvHixWb79u1m8eLF5rLLLrOWPfbYY25jlJSUOJxhu+mmm8zatWvNtm3bzGuvvWbi4uKsX/ZWr17tNk5mZqZp2bKl9WXw5z//2WzatMls2rTJ/PnPf7YOCFu2bOn2LIgxxnz66afWL46tWrUyr732mtm2bZtZu3atuemmm6x2DhgwwOkA1t95o++wz2l8+xxjjGnfvr1p1qyZmThxonnnnXfMV199ZXbu3Gk2bdpkXn/9dYd9QGhoqPn8889dxvHWNr7tttussoMHDzaffPKJ2b59u1m4cKHp1KmTtWzevHluY9S3/uevzrfvlP9Af+mll5qpU6eaTz75xKSnp5t//OMfZvny5WbChAnWD1+SzH/+53+6bQvfV/7Fk0TUGI51LnTfIRFtwMaNG2d1Fk9elZUfFFb3ioiIqPILudz+/ftNly5d3MaJjo42K1eurDbOihUrrF+GXL2Sk5PN/v37q40zdepUh4Payq/hw4dX+0urv6lJf5HOnXlwp7S01PzhD3+ocv0JEyaY0tLSKtuUk5Njevfu7TZGWFiYmT9/frXvbevWraZ169Zu47Ru3dps3bq12jhvvvmmw4FJ5VefPn1MTk5OtXH8jTf6DvucxrfPMeZcMuHJ596uXTuzbt26KmN5YxsXFBQ4DOWs/AoMDPTo7GN963/+6Hz7TsWRYlW9goKCzPTp090Osy7H95X/8DQR5VjnwiIRbcDONxHNy8sz7733npkyZYr5t3/7N5OYmGgiIiJMaGioadWqlbnqqqvM888/b3766SeP23TmzBkza9Ys06tXLxMbG2siIiJM165dzQMPPGAOHz7scZzDhw+bBx54wCQnJ5uIiAgTGxtrevXqZWbNmuV2fL0rmzdvNmPHjjUJCQkmNDTUxMXFmWuuucZ88MEHHsfwJzXpL1LViWi5Tz/91Nx4442mTZs2JjQ01LRp08bceOONVf6qV1lxcbF5/fXXzYABA0zz5s2NzWYzSUlJZuLEiea7777zOE5OTo558sknzcUXX2yioqJMVFSUueSSS8yTTz7pNJSvKt9++62ZOHGiSUpKMjabzTRv3twMGDDAvPHGG26HzPg7b/Qd9jmN0549e8xLL71kRo8ebS699FLTqlUrExwcbJo0aWI6depkbrrpJrNo0SKPt7O3tvH7779vrrnmGhMXF2dCQ0NNQkKCGTt2rMshsu7Ut/7nb8637xQVFZkPP/zQPPjgg2bAgAGmY8eOpkmTJiYkJMS0aNHC9O/f3zzxxBMmIyPD4zbxfeUfPE1Ey3Gsc2EEGGOMAAAAAADwER7fAgAAAADwKRJRAAAAAIBPkYgCAAAAAHyKRBQAAAAA4FMkogAAAAAAnyIRBQAAAAD4FIkoAAAAAMCnSEQBAAAAAD5FIgoAAAAA8CkSUQAAAACAT5GIAgAAAAB8ikQUAAAAAOBTJKIAAAAAAJ8iEQUAAAAA+BSJKAAAAADAp0hEAQAAAAA+FVzXDQAA4Hzk5+frm2++0YEDB3T8+HGdPXtW4eHhat68uTp37qzLL79ckZGRdd1MeNmgQYO0ceNGazo1NVWDBg2quwYBAGqERBQA0ODY7Xa9//77+p//+R9t2rRJJSUlbssGBwerf//+uuOOO3TnnXcqLCzMhy0FAACukIgCABqUJUuW6OGHH9bRo0c9Kl9SUqKNGzdq48aNmjZtmmbPnq3bb7/9ArcS7uzcuVMff/yxNd2zZ0+NHDnSb+sFALhGIgoAaBAKCwt199136/3333dbJjAwUDExMTp16pTKysqclh87dkx33HGHVqxYoUWLFikiIuJCNhku7Ny5U08//bQ1PW7cOJ8lonVRLwDANW5WBACo9woKCnTttde6TEKvuuoqvfnmmzpy5IiKiop04sQJFRUVKTMzUwsXLtQ111zjtM7SpUs1ZMgQnTlzxhfNBwAAlZCIAgDqNWOMbrvtNocb00hSu3bttHLlSq1fv14TJ05UYmKigoPPDfQJDg5WQkKCxo8fr3Xr1mnt2rVq3769w/qbN2/WzTff7PLMKeq/DRs2yBhjvbhREQA0LCSiAIB6bdasWVq5cqXDvC5dumj79u0aMWKERzGGDh2q9PR0de3a1WH+Z599pueff95rbQUAAJ4hEQUA1FsHDx50uK5PkuLi4vTFF1+odevWNYrlbr3nnntO+/btO++2AgAAz5GIAgDqrenTp6uwsNBh3ssvv6zExMRaxWvXrp1efvllh3l2u13Tp0+vbRMBAEAtcNdcAEC9lJ2drcWLFzvMGzBgwHk/emXMmDGaO3euvvzyS2ve0qVL9cILL6ht27bnFftCKSws1J49e7R371799NNPOn36tGw2m5o1a6aEhAT17dtXUVFRF6z+PXv2aPv27Tp27JgkqWXLlurevbv69OmjoKCgC1YvAMCPGQAA6qEXXnjBSHJ4ffDBB16JnZKS4hR75syZLsumpqY6lBs4cGCN62vfvr1DjIyMjGrXOXjwoJkxY4YZOHCgCQsLc2pvxVdQUJAZOHCgWbFihSkrK6tR2wYOHOgQKzU11VqWkpJiLrroIrf1NmvWzDz33HOmoKCgyjoWLVpUZfurerVv377G7fZ2vc8///x594Fylft13759ax0LABoyhuYCAOqlVatWOUzHxMRo1KhRXok9cuRIxcbGOsxbvXq1V2J7wxtvvKFOnTrp8ccf18aNG1VUVFRl+dLSUm3cuFE33HCDhg8frtzc3POq/+zZs7r11ls1ZswY7dq1y225EydO6Mknn9TAgQN1/Pjx86qzPrv77rsVFhZmTW/cuFHff/99jeMYYzRv3jyHeffcc895tw8AGiISUQBAvVNcXKy0tDSHeQMGDJDNZvNKfJvNpv79+zvM27Ztm+x2u1fin69Tp065XRYREaHmzZsrNDTU5fK1a9fqyiuvVEFBQa3qLikp0ciRI/Xhhx86zA8LC3NK3stt375do0ePljGmVnXWd3Fxcbrlllsc5s2dO7fGcb744gsdOHDAmm7WrJluvfXW824fADREXCMKAKh3du/e7ZQUXnHFFV6t44orrtCnn35qTdvtdu3evVs9e/b0aj3no1WrVho+fLiuueYaXXrppUpOTlZISIi1/OjRo/rqq680b948bdiwwZr/3Xff6d///d/11ltv1bjOqVOnWj8CdO3aVY888oiGDRum+Ph4SdKZM2e0Zs0aPfnkkw53G960aZMWLlyoCRMmOMXs16+f3njjDUlSWlqa3n33XWtZ3759NW7cOLftadKkSY3fw4Wod8qUKXrvvfes6XfffVczZ85URESEx+0pb0u5u+66y2s/rgBAg1PXY4MBAKhs2bJlTtfsLVu27ILX8dFHHzmVq4trRFesWGE+/PBDU1JS4nEd8+fPN0FBQVYdgYGB5uDBg9WuV/lay/LXhAkTTHFxsdv1Tp48aX71q185rNOzZ89q66t83ea4ceM8fo9VtdvVNaLerveKK65wiLFgwQKP1/3hhx9McHCwtW5AQIDZt29fjdsAAP6CobkAgHonOzvbaV7Lli29WkeLFi2c5pXfFbauXX/99br55ptrdEfau+++W1OnTrWmy8rKnM7AeWrEiBGaP3++goPdD5yKjY11OuO6c+dOh6Gn/mbKlCkO0zUZnvvWW2+ppKTEmv7tb3+rLl26eK1tANDQkIgCAOqd06dPO82LiYnxah2u4p05c8ardfja/fff73DtaGpqao1jBAcHa86cOQoICKi2bK9evXT55Zc7zPvHP/5R4zobijFjxqh58+bW9Pbt2z16v6WlpZo/f77DPG5SBKCxIxEFANQ7rm4aFBkZ6dU6XMUrLi72ah2+FhMTo27dulnT//znP3X27NkaxbjuuuuUmJjocfnKN33as2dPjeprSGw2m9M1sJ6cdV61apWOHj1qTbdp00Y33HCD19sHAA0JNysCANQ7ru4Im5+f79U6XMXzdrLrTSUlJdq3b58OHz6svLw8nT59WqWlpU7lKiaeJSUl+vHHH9WxY0eP6xk4cGCN2pWUlOQwfb6Pjqnv7rnnHr344osqKyuTJC1evFgvvfRSlWfsKyerd999d5XDngGgMWAvCACod6KiopzmVfVIk9pwFS86OtqrdZyvgoICvf/++0pJSdHmzZtr9XiZmiaGHTp0qFH5yneXzcvLq9H6DU2HDh103XXXaeXKlZLO/aDx7rvv6r777nNZPiMjQ+vWrbOmg4KCNHHiRJ+0FQDqM4bmAgDqnTZt2jjNO378uFfr+OWXX5zmtWrVyqt1nI+VK1eqW7dumjRpklJTU2v9jFNX19tWxd2zQt2pfEMlV2dp/U3lmxbNmzfPbdl58+Y5PF91xIgRateu3QVrGwA0FCSiAIB6p/JwT+nc9Y7e5CreRRdd5NU6auudd97RyJEjlZWVdd6xyoeQesqTmxQ1dkOGDFFycrI1vWvXLn355ZdO5ex2uxYuXOgwj5sUAcA5JKIAgHqnR48eTteJevturJXjRUVF1XhY6oVw4MABTZ482SGBDAoK0ogRI/Tqq6/qyy+/1KFDh5SXl6eioiIZYxxeNb3GEzUXEBCge++912Geq5sWLVu2TDk5OdZ0p06dNGTIkAvePgBoCLhGFABQ74SGhqpv374OZ5m++uorFRYWymaznXf8wsJCffXVVw7zfvvb316ws4E1OSv5zDPPqKioyJpOTEzUypUrdemll3q0fkN/BE1Dcdddd+mJJ56wbnr10UcfKScnx+F5t5WfMzp58mTOOAPAv3BGFABQL40YMcJhOjc3Vx9//LFXYn/88cdON/G58cYbXZb1xjWQnt4wqKSkxLoJTrl33nnH4yRU8v61tHAtJiZGd9xxhzVtt9u1YMECa3r37t0OP6SEhYVp/PjxPm0jANRnJKIAgHrp9ttvd0oCX3/9da/ErnymKjo6WqNHj3ZZtvIdfGt6xvHkyZMe3zAoMzPTIWlt166dBg0a5HFdP//8s44cOVKj9qH2Kt+06M0337TOflfuYzfffLNatGjhs7YBQH1HIgoAqJfatGmj3/3udw7zNm3apPfff/+84qakpGjjxo0O8+655x63z4GsfBfZw4cP16i+ynVV5eeff3aYTkhIqFFdq1atqlH5ulD5+Zm+usvuhaj3kksu0W9+8xtrOiMjQ5999pkKCgr07rvvOpTlJkUA4IhEFABQb02fPl1hYWEO8x588EFlZmbWKt4PP/ygBx980GFey5Yt9fDDD7tdJzExUREREdZ0bm6udu3a5XGdVT3ao7LKN2iqyTNAS0tL9corr3hcvq5Ufu6ot58P6+t6//SnPzlMv/HGG0pJSXGIf8kll6h///5eqQ8A/AWJKACg3urSpYueeuoph3k///yzrr76av344481ipWTk+Nyvddff73KIZNBQUG6/PLLHea99dZbHtW5bNkyrV271uM2tm3b1mF6z549OnjwoEfrPv300/ruu+88rquutG7d2mH6+++/b9D1jho1yuG5t6tXr9asWbMcyvzxj3/0Sl0A4E9IRAEA9dpjjz2m4cOHO8zbv3+/+vTpo08//dSjGOvWrVPv3r21Z88eh/kPPfSQbr755mrXr1xmzpw5Lp8bWdGaNWt01113edS+cq1atVL37t2taWOMJk6c6HAX3cqMMZoxY4aeffbZGtVVVy655BKHa38PHDigzz77rMHWGxwcrMmTJ1vTpaWl2r9/vzUdFRWlO++887zrAQB/w+NbAAD1WmBgoJYuXaphw4Zp06ZN1vysrCyNGDFCV111lcaOHashQ4YoPj5ewcHBKi0tVXZ2tr744gulpKRo3bp1TnEnT56sF1980aM23HnnnZo2bZo13LK4uFjDhg3To48+qnHjxikxMVGSVFRUpM2bN2v+/PlasmSJjDHq1KmTTp8+7XT9pzt//OMfdf/991vTqamp6t27t6ZOnaohQ4YoOjpa0rmbIK1bt04vvfSStm/fLklq0aKF4uLitHv3bo/qqgsRERG6+uqrHZLA66+/XiNGjNAVV1yh2NhYh4SxSZMmuv322+t1vZMmTdJzzz2n4uJip2W3336707BgAIAkAwBAA5Cfn29uu+02I8ntKzAw0DRt2tQEBga6LRMaGmpef/31Gte/cOFCtzEjIiJMbGysCQgIcJgfGxtr/vnPf5r27ds7zM/IyHBbT2Fhobn88std1hMQEGBiY2NNZGSk07KQkBDz2WefmYEDBzrMT01NrfJ91bR8ZYsWLXJYf9y4cdWus3Hjxio/o4qv9u3be63d3qjXHXd985tvvqlRHABoLBiaCwBoECIiIpSSkqL333/f6VrKcmVlZTp58qT1CI3KRo4cqX/+85+1uoPp+PHj9cwzz7hcVlBQoNzcXBljrHlt27bVF198UaNngErnnje5cuVKl+sZY5Sbm6v8/HyH+dHR0Vq+fLmGDBlSo7rqym9+8xvNnz/f4SZQDb3eyjctkqS+ffuqZ8+eXq8LAPwBiSgAoEEZO3asDh48qAULFmjgwIFOj+Vwp3Xr1pozZ466detW67qfeuopff755+rdu7fbMlFRUbr//vv13Xff6YorrqhVPW3atNHWrVs1bdo0NW/e3G25yMhITZo0Sd9//72uu+66WtVVV/7whz/o4MGDevHFFzVixAh17NhR0dHRTs+ObSj19uvXzxo2XY5HtgCAewGm4s+3AAA0MPn5+fr666914MABHT9+XGfPnlVZWZm2b9+u1atXO5S9+OKLtWnTJqdng9ZGZmamNm/erJ9++klnzpxRbGysevTooV//+tey2WznHb9ccXGxduzYoW+//VYnTpyQMUbNmzdX9+7d1adPH6fH26BurF27VsOGDbOmmzVrph9++MGrfQEA/AmJKADAL5WUlOjWW2/V8uXLHeYPGDBA69atU3h4eB21DP5o5MiR+uSTT6zpBx98UC+99FIdtggA6jcSUQCA37Lb7Ro5cqTWrFnjMP+GG27QRx99dMGHgaJxOHz4sDp37qzS0lJJUkBAgPbt26fOnTvXccsAoP7iGlEAgN8KDQ3VRx99pMGDBzvMX7FihcOzH4Hz8cwzz1hJqCQNHz6cJBQAqkEiCgDwazabTStWrFC/fv0c5i9YsECPP/54HbUK/mLZsmV6++23HeY99thjddMYAGhAPLvVIAAADVhUVJTWrFmjV1991eHMVUBAgI4dO6Y2bdrUYevQUOzYsUM7duyQJOXk5CgtLc1p2Pf111+v/v3710XzAKBB4RpRAAAAD0yfPl1PP/202+UxMTH69ttvlZCQ4MNWAUDDxNBcAACA89S0aVOtWrWKJBQAPMTQXAAAgFqIiopS586dNXz4cN13331q3bp1XTcJABoMhuYCAAAAAHyKobkAAAAAAJ8iEQUAAAAA+BSJKAAAAADAp0hEAQAAAAA+RSIKAAAAAPApElEAAAAAgE+RiAIAAAAAfIpEFAAAAADgUySiAAAAAACfIhEFAAAAAPgUiSgAAAAAwKdIRAEAAAAAPkUiCgAAAADwKRJRAAAAAIBPkYgCAAAAAHyKRBQAAAAA4FMkogAAAAAAnyIRBQAAAAD4FIkoAAAAAMCn/g/nsCzP6IFvEgAAAABJRU5ErkJggg==", "text/plain": [ "